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Preface

Clusters of workstations/PCs connected by off-the-shelf networks have become
popular as a platform for cost-effective parallel computing. Hardware and soft-
ware technological advances have made this network-based parallel computing
platform feasible. A large number of research groups from academia and industry
are working to enhance the capabilities of such a platform, thereby improving its
cost-effectiveness and usability. These developments are facilitating the migra-
tion of many existing applications as well as the development of new applications
on this platform.

Continuing in the tradition of the two previously successful workshops, this
3rd Workshop on Communication, Architecture and Applications for Network-
based Parallel Computing (CANPC’99) has brought together researchers and
practitioners working in architecture, system software, applications and perfor-
mance evaluation to discuss state-of-the-art solutions for network-based parallel
computing systems. This workshop has become an excellent forum for timely
dissemination of ideas and healthy interaction on topics at the cutting edge in
cluster computing technology.

Each submitted paper underwent a rigorous review process, and was assigned
to at least 3 reviewers, including at least 2 program committee members. Each
paper received at least 2 reviews, most received 3 and some even had 4 reviews.
We have selected the 15 best papers for this workshop. We evaluated not only
the technical content of each submission, but also the potential for stirring de-
bate and bringing about controversial discussions. This CANPC workshop was
sponsored by the IEEE Computer Society, and was held in conjunction with
the Fifth International Symposium on High Performance Computer Architec-
ture (HPCA-5), Orlando, Florida. The workshop itself took place on January 9,
1999.

Several people deserve credit for the success of this workshop. Dhabaleshwar
Panda and Craig Stunkel, the organizers of the previous two CANPC workshops,
deserve special mention for guiding us along the way. We would like to thank
all the authors who submitted papers and the program committee for doing an
excellent job of helping us select the papers with detailed and timely reviews.
Thanks are also due to the HPCA-5 organizing committee (D. Agrawal, J-L.
Gaudiot, and B. Lecussan in particular) for their support of this workshop. Ajay
Hampapur and Shailabh Nagar did a wonderful job of handling the electronic
submission and review process at Penn State. Finally, we would like to thank
the editorial staff of Springer-Verlag for agreeing to publish a final version of
these proceedings.

February 1999 Anand Sivasubramaniam
Mario Lauria
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A Parallel Implementation of the Everglades
Landscape Fire Model in Networks of
Workstations *

Fusen He and Jie Wu

Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL. 33431
{fhe, jie}@cse.fau.edu

Abstract. This paper presents a low-communication overhead and high-
performance data parallelism implementation of the Everglades Land-
scape Fire Model (ELFM) in a network of workstations (NOWs). Check-
pointing and rollback techniques were used to handle the spread of fire
which is a dynamic and irregular component of the model. A synchro-
nous checkpointing mechanism was used in the parallel ELFM code using
Message Passing Interface (MPI). The speedup and performance of the
parallel program were also studied. Results show that the performance
of ELFM using MPI is significantly enhanced by using the checkpointing
and rollback mechanisms.

1 Introduction

With the advance of the network technology, network computing has en-
tered into the main stream of solving scientific problems. Network computing
is a process whereby a set of workstations connected by a network work collec-
tively to solve a single large problem. As more and more organizations have al-
ready had high-speed networks/switches interconnecting many general-purpose
workstations, the combined computational resources may exceed the power of
a single high-performance computer. This trend has gained sufficient popular-
ity to establish a new parallel processing paradigm: network of workstations
(NOWs) [1].

A NOWSs can be organized as a “cooperative cluster” to perform paral-
lel/distributed computation for a single application. Each individual worksta-
tion can be assigned a part of a given problem and these parts can be computed
concurrently between synchronization points. When the computation reaches
these points, the participating workstations pause in their computation stage
and enter a communication stage. During the communication stage, these work-
stations exchange messages containing the intermediate results needed in the
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2 Fusen He and Jie Wu

next computation stage. A local area network (LAN) is a widely used network
structure in a NOWSs. Since LAN technology was not initially developed for
parallel processing, communication overheads among workstations are still quite
high [1]. This has placed severe constraints on obtaining high performance in
a NOWSs. The unacceptable performance of the parallel implementation of the
Everglades Landscape Fire Model (ELFM) using the network programming en-
vironment Ezpress is such an example [3].

The Everglades landscape is a vast freshwater marsh in South Florida and is
one of the largest subtropical wetlands in the world. The Everglades has changed
dramatically during this century with vast areas being converted to urban and
farming land use. These changes may significantly affect efforts to restore nat-
ural vegetation and hydroperiods in the remaining Everglades. Fire has been an
important ecological process in the Everglades and a primary factor shaping the
Everglades vegetation patterns. We cannot fully understand the Everglades with-
out understanding the function of fire. Unfortunately, fire is a difficult process to
experimentally manipulate, especially at a landscape level. This is because that
the spread of fire is dynamic and probabilistic in nature. Recently, an Everglades
Landscape Fire Model (ELFM) [8] was developed to understand fire behavior in
Water Conservation Area 2A (WCA 2A) in the Everglades.

Computer simulation can be applied to evaluate impacts and understand
ecosystem dynamics. In order to speedup the simulation process, ELFM has
been parallelized using Express [3] in several platforms such as UNIX worksta-
tions, CM-5 supercomputers, and Macintosh transputers. The parallel ELFM
code has also been ported from Express to Message Passing Interface (MPI) [4].
The study in [2] showed that the major reason for the poor performance of the
parallel ELFM code is the heavy interprocessor communication overhead. It is
also shown that the process synchronization consumes a huge portion of CPU
time. In parallel ELFM simulation, when a fire occurs in landscape, it spreads.
If a fire occurs near a boundary area of a subdomain simulated by a processor, it
will spread to an adjacent subdomain that is simulated by a different processor.
In this situation, data exchange is needed to simulate the process of fire spread-
ing that acrosses the boundary of one subdomain to another subdomain. It is
required that this data exchange be performed at the same simulation time step
through process synchronization.

According to the fire behavior in landscape, the probability of fire occurrence
is relatively small. Even when a fire occurs in a subdomain which is simulated
by a processor, it may not be necessary to synchronize all the processors unless
the fire spreads to other subdomains simulated by other processors. The main
purpose of this study is to provide an efficient mechanism to support this type
of parallel applications. Specifically, we try to enhance the performance of the
parallel ELFM code, with MPI as its parallel programming environment, by
using the checkpointing and rollback techniques. The traditional checkpointing
andirollbacksaremormallysusedstoraddress fault tolerance issues [5]; however, we
use them solely for the performance enhancement purpose in this study. The
interval between two adjacent checkpoints (also called checkpoint interval) is
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adjustable. The heavy interprocessor communication can be reduced by a proper
selection of the frequency of process synchronization among processors.

This paper is organized as follows: Section 2 discusses the current status of
ELFM. Section 3 overviews several checkpointing and rollback techniques in a
NOWSs. An approach aiming to reduce the heavy interprocessor communication
and synchronization overhead is discussed in Section 4. Section 5 presents the
results of this study and shows the improved performance of the parallel ELFM
code using MPI. Section 6 concludes this paper.

2 Everglades Landscape Fire Model (ELFM)

The ELFM code was used to simulate fire in the Water Conservation Area
2A (WCA 2A) in the northern Everglades. The WCA 2A landscape, with an
area of 43,281 ha, is a mosaic of sawgrass marshes, sloughs, shrub and tree
islands, and invasive cattail communities. The ELFM code simulates fire on
a large spatial scale with a fine resolution of 20m x 20m which, in terms of
grid cell, comes to 1755 x 1634. ELFM is a spatial model with mostly nearest
neighbor interactions except fire spotting in which a fire jumps from one area to
another. Fire spreading is a special case in which a fire jumps (spreads) to its
adjacent areas only. We assume that each cell in the landscape is homogeneous,
i.e., the same computation and communication structure is used. The ELFM
code is portable with its ability to compile and run on UNIX workstations, CM-
5 supercomputers, and Macintosh Transputers without any significant changes
in code.

In the current ELFM code, the simulation time step of fire spreading and
spotting is measured in minutes and the fuel level (a static component in the fire
model) is updated every hour. Process synchronization is performed on a daily
base. Therefore, the simulation on fire spreading and spotting is computational
intensive.

The early version of the parallel implementation of the ELFM code uses a
pessimistic approach. Process synchronization through interprocessor commu-
nication is performed at each simulation step (either in minutes or in hours)
even when there is no fire in the landscape. Since interprocessor communication
overhead is still quite high in a NOWs, this pessimistic approach results in a
poor performance of the parallel ELFM code [2]. By analyzing the ELFM code,
we have found that the occurrence of fire spreading and spotting is rare. Even
a fire occurs and spreads in the landscape, it usually affects a small portion
of the landscape rather than the entire one. If a fire does not spread to an-
other subdomain simulated by another processor, there is no need to exchange
data among processors. We can use checkpointing (saving a set of local states)
combined with rollback (processes rolling back to their checkpoints) to enhance
thepperformanceslnythispapproachypdatagexchange is treated as message passing
among processors in a NOWs. No message passing among processors is needed
in regular simulation steps. Checkpointing is made at a regular interval. Roll-



4 Fusen He and Jie Wu

back is needed only when a fire spreads to its neighboring subdomains to keep
simulation data consistent.

3 Checkpointing and Rollback

For parallel processing in a NOWs, a global state is defined as a collection of
local states, one from each workstation in the NOWs. In the ELFM, the state is
a set of numerical data which determines the evolution of the ecosystem in the
Everglades. The checkpointing method [6], [7] is usually used to save the global
state. During the normal execution, each processor periodically checkpoints its
state by storing its execution state into a stable storage such as a hard disk.
Checkpointing is normally used to achieve fault tolerance. In such an applica-
tion, system states are stored regularly as checkpoints. When a failure causes an
inconsistent state, it can rollback to a previous consistent state by simply restor-
ing a prior checkpointing state. This rollback process is also known as rollback
recovery.

A strongly consistent set of checkpoints consists of a set of local checkpoints
such that no information flow takes place between any pair of processors during
the interval spanned by the checkpoints. Checkpointing can be either synchro-
nous, asynchronous, or a combination of both. Another choice is whether or not
to log messages that a processor sends or receives. For parallel applications such
as the ELFM, synchronous checkpointing is the best choice since message ex-
change must be performed at the same physical process evolution time. Clearly,
checkpoints produced by synchronous checkpointing form a strongly consistent
set.

During the simulation, when a global state becomes inconsistent, as in the
case when a fire acrosses boundary of a subdomain, all the processors need to
restore a previous state which is stored in the latest checkpoint. This process is
referred to as rollback.

In the parallel ELFM code, we use checkpointing combined with rollback to
enhance the performance of the program. To simplify our discussion, we consider
an example of a NOWs consists of four workstations and the problem domain
of the ELFM is partitioned into four subdomains with each subdomain assigned
to a distinct workstation. It can be easily extended to a generalized case with
n workstations in a NOWs. We refer to each workstation as a processor. Fig-
ure 1 shows a typical rollback process. The horizontal parallel lines represent the
simulation time space (rather than the physical time space) in each processor.
The vertical dashed lines represent synchronous checkpoints. d is the checkpoint
interval, which is a constant in our simulation. The black dot on each horizontal
line represents the simulation time step of the corresponding subdomain at the
current physical time. Since each processor may have different workloads and
different processing speed, if there is no process synchronization, the actual sim-
ulationptimepsteppatydifferentyprocessorsymay also be different. This means that
processors run asynchronously. The X sign in Figure 1 means that a fire occurs in
processor P, and it is going to spread across the boundary of the subdomain (re-
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Fig. 1. Rollback process in a 4-workstation NOWs.

ferred to as message exchange). All the processors rollback to their most recent
checkpoints. After that, processors resume simulation from that checkpoint but
still in the asynchronous mode. When reaching the time that message exchange
is needed (the start of fire spreading and spotting simulation), all processors
are synchronized and then perform message exchanges. This point is known as
the synchronization point. Since a checkpoint is also a synchronization point,
if a processor reaches a checkpoint while other processors are still behind this
checkpoint, this processor is blocked for other processors to catch up. There
exist several optimization methods, like lazy rollback (i.e. rolling back just the
subdomains involved). However, they would not improve speedup in our case,
since it is based on the completion time of the last processor that finishes its
simulation.

The shaded area in Figure 2 represents the period that the processors sim-
ulate fire spreading and spotting concurrently in the synchronous mode. After
the completion of simulation on fire spreading and spotting, all the processors
switch back to the asynchronous mode. The completion point of synchronous
computation is logged as an new checkpoint. A checkpoint based on the check-
point interval d is referred to as a regular checkpoint. Checkpoints 1, 2, and 4 in
Figure 2 are regular checkpoints. A checkpoint immediately after the completion
of synchronous computation is referred to as a dynamic checkpoint. Checkpoint
3 in Figure 2 is such an example.

en regular and dynamic checkpoints.
eeded (because of multiple fires) in a
ssors rollback to their most recent dy-
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Fig. 2. Synchronize processors before message exchange.

namic checkpoints, restore their consistent states there, and resume simulation
similar to those shown in Figures 1 and 2. If processors rollback to their most
recent regular checkpoints, all the processors will enter into an infinite loop be-
tween the regular checkpoint 1 and the point of the current fire in Figure 3. By
applying dynamic checkpointing, we avoid such infinite loops. Clearly, if there is
no fire spreading and spotting during the simulation, only regular checkpoints
are used. In the next section, we propose an algorithm based on the checkpoint-
ing and rollback mechanisms and show its application in parallelizing the ELFM
code using MPL.

4 The Proposed Approach

This section introduces a low-communication overhead model based on check-
pointing and rollback mechanisms. We start with a mathematical model for the
estimation of simulation time, discuss several relevant collective communication
functions provided by MPI, and use checkpointing and rollback to parallelize the
ELFM code.

4.1 Mathematical model

jon of a model is to allow a simulation

alent serial version with the same nu-
ad over several processors, the amount
) ‘L.‘;L«}M
) _
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Fig. 3. Rollback with multiple message exchanges between a checkpoint interval.

of time taken to perform computation on an individual processor should be re-
duced. However, additional interprocessor communication and synchronization
overheads make the program spend more time on simulation. Whether a parallel
algorithm is successful or not depends on a balance between these two factors.

For parallel simulation in a NOWSs, each workstation is assigned part of the
workload and works independently. We can name this kind of computation as
asynchronous computation. However, when a neighbor interaction (such as fire
spreading and spotting) occurs near the boundary of the subdomain simulated
by a workstation, data exchange between workstations must be performed in
order to make the result consistent. The corresponding workstations exchange
data using the message passing mechanism, and data exchanges always occur
at the same simulation time. Therefore, process synchronization is needed. This
type of computation can be viewed as synchronous computation. The length of
synchronous computation varies with time, based on the duration of fire spread-
ing and spotting. Figure 4 illustrates this type of application in a NOWs with
four workstations.

Suppose that the probability of message passing among processors is p, the
cost for message passing is ¢, the cost for process synchronization is s, the process
synchromzatlon 1nterval (also called checkpoint interval) is d, the number of steps
orkload of the parallel program is W,
n, and the processor processing speed

the m i e processor can process per unit time,
e 4
3
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Synchronous computation

Time

P :
§
P =
§
=
" -
—
§ S

P ™~ § T Pl ‘

Time begin Time end

Asynchronous computation

Fig.4. Synchronous and asynchronous computations of an application in a
NOWSs with four workstations.

then the execution time of parallel program can generally be expressed as,

N
T =T, +T, + T, + T, = maz{ -

}+px Nxc+ + T, (p,d,vp, N)

n X v
here, T, is the execution time for effective workload, T is the execution time for
interprocessor communication, Ty is the execution time for process synchroniza-
tion, and 7). is the execution time for rollback and is a function of p, d, v,, and
N. If the workload is uniformly distributed, then W = Nw. w is the workload
for each simulation step. i is the workload on each processor per simulation
step. Normally, ¢ and s are much larger than . When ¥ is small, it is obvi-
ous that if process synchronization is performed at every simulation step, that
is d = 1, the interprocessor communication overhead will be large. The longer
the checkpoint interval, the less the simulation time. However, if a fire spreads
to adjacent subdomains simulated by other processors during the interval, the
simulation time will increase. This is because the rollback process will force the
system to return to an early state that has already been simulated. Therefore,
more simulation time is needed. If we reduce the process synchronization inter-
val, synchronization time will be wasted if there is no fire spreading and spotting
to other subdomains at each checkpoint interval. The purpose of this paper is
to study how to choose the checkpoint interval to gain a maximum possible

b consistent data, each processor needs
tion steps for each burning fire in the
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entire landscape, not just in the subdomain simulated by the local processor. MPI
collective communication functions such as MPI_Allgather and MPI_Allreduce
are used to collect the maximum number of simulation steps in the NOWs.
Since the interprocessor communication in the current MPI implementation is
sender /receiver based, the above mentioned collective communication functions
synchronize the processors while collecting information. There is no need to
use MPI_Barrier, a synchronization function in MPI, to perform the process
synchronization.

The performance of a parallelized program can be referred to as speedup,
which is the ratio of the computation time for a sequential computation to that
of a parallelized version of the same computation. The ideal speedup of a com-
putation is proportional to the number of processors used in the computation.

Since UNIX is a multiuser/multitask operating system, the execution time
varies between individual runs. However, the CPU time dose not change. We use
the CPU time to measure the performance of the parallel ELFM program. The
speedup of the parallel ELFM program can be expressed as follows,

Average sequential CPU time

Speedup =
peedup Average parallel CPU time

4.2 Application of checkpointing and rollback in parallel ELFM

The previous study [2] of the parallel ELFM code indicated that the syn-
chronous computation is needed only when there are data exchanges between
adjacent processors. This occurs when a fire acrosses the boundary to another
subdomain simulated by a different processor. Checkpointing with rollback is
an ideal choice to improve the performance of the parallel ELFM code. Since
data exchange among processors is performed at the same simulation time step,
synchronous checkpointing will be the best choice. In our simulation, the syn-
chronous checkpointing interval is measured by days.

The interprocessor communication in the current version of MPI is a two-
sided communication. It is invoked at both sender and receiver sides. Regular
send-receive communication requires matching operations by sender and receiver.
This message-passing communication achieves two goals: communication of data
from sender to receiver and synchronization of sender with receiver. However, in
the parallel ELFM code, when a fire spreads across the boundary of a subdomain,
only the processor holds that subdomain has the information needs to be sent.
This means that data to be transferred to other processors are available only
on one side. The receiving processors do not know in advance when the relevant
information will be sent to them. Regular send-receive commands cannot be
placed in respective sending processors and receiving processors. It would be
better if we can transfer data to receiving processors asynchronously. That is,
sending data whenever it is ready at sending processors and reading data when
neededpatyreceivinggprocessorssplivengthe MPI nonblocking operations cannot
meet our requirements. We have to use another way to achieve asynchronous
one-sided interprocessor communication.
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Sun Microsystems’ Network File System (NFS) is a convenient choice. NFS
is a remote file access mechanism defined in the UNIX operating system. NFS
allows applications on one system to access files on a remote system as if it is
a local file. In the parallel ELFM code, data need to be sent out can be stored
into files in a hard disk. Processors read these files when needed. By doing so,
unnecessary interprocessor communications can be avoided, and therefore, it
provides an effective means to implement process synchronization.

During the process of simulation, each processor keeps a set of flags that are
referred to as rollback flags. This flag set stores the status information of all the
processors in a NOWs. Each flag set is stored as a data file in the hard disk and
the size of the flag set is equal to the number of processors in the NOWs. These
files are referred to as the rollback files. The number of files is also equal to the
number of processors. The position of a rollback flag for a specific processor in the
file matches the processor id of that processor. Reading and writing operations
on files are performed based on rules described in Figure 5: Each processor reads
the complete rollback flag set from the file assigned to it. However, processor P;
only updates rollback flags which store the rollback information of this particular
processor. That is, the ith position of all the data files in Figure 5. This kind
of operations can be expressed as “reads in row and writes in column”. The
rollback flag set is checked by a processor on a daily base.

Just before a fire spreads across the boundary to another subdomain sim-
ulated by a different processor, the processor executing the current simulation
sets its rollback flag to true and updates the data files that store the rollback flag
set. This processor also creates a starting time file that stores the time at which
the fire begins to spread across the boundary to other subdomains simulated by
other processors. Then this processor rollbacks to its most recent checkpoint. It
restores the saved state of that processor at the checkpoint and resumes simu-
lation from the checkpoint in the asynchronous mode. However, it switches to
the synchronous mode once it reaches the starting time, i.e., the start of a fire
crossing the boundary.

The operations for those processors which do not initiate the rollback process
are described as follows: Processors read the rollback flags from the rollback flag
files. If they find that some of these flags are set to true, these processors reset
them back to false. They also select the minimum starting time from the corre-
sponding starting time files. These processors then rollback to their most recent
checkpoints, restore their states at the checkpoints, and resume the simulation
in the asynchronous mode. However, these processors will switch to the synchro-
nous mode once their simulation time reaches the minimum starting time they
read from starting time files. All processors will switch back to the asynchronous
mode once the current fire stops. The mechanism that resets rollback flags back
to false avoids the infinite loop that may occur in the parallel ELFM. If the flag
isynotysetptopfalseppattergthessynchronous computation, the processors read the
rollback flag set again and get an incorrect conclusion that message exchange
is needed. In order to keep the stored data up-to-date, the fsync function in
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Fig. 5. File operations on rollback information in a 4-workstation NOWs.

UNIX should be called each time when data writing is performed. fsync forces
the UNIX operating system to flush data in memory buffer to a hard disk.

In the proposed approach, the most recent checkpoint of each processor is
stored in the main memory of each processor. The size of the data is 3 x 1755 x
1634/n, where n is the number of processors in the NOWs.

5 Results and Discussion

The parallel ELFM using the proposed approach is implemented using
MPICH, which is an MPI implementation provided by Argonne National Labo-
ratory. The computing environment is a set of Sun Sparc V workstations running
Solaris. These workstations are interconnected by a 10 Mbits Ethernet.

We use speedup to measure the performance of the parallel ELFM using MPI.
In order to show the improvements achieved by the proposed approach, we first
look at the speedup of the parallel ELFM using Express [3]. The performance
analysis in [3] indicated that the four-processor-version of the parallel ELFM was
slower than the one processor code by a factor of about four; the four-processor-
version took roughly 10 minutes to simulate one day, and the one processor
version clocked in at about 2.6 minutes. There is a light variation in these values
between individual runs of these models, however, due to network traffic and
other factors. The true serial version of the code runs at a rate of roughly 11
years simulation in 90 minutes, or 0.02 minutes per day. Thus, the performance
of the parallel ELFM code using Express is unacceptable.

In an early study [2], the parallelized ELFM code using MPI has been run on a
NOVVS w1th four Workstatlons Flgure 6 shows the speedup of the parallel ELFM
‘ g technique. This version of the parallel

That is, processor synchronization is
The sequential version of the ELFM
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Fig. 6. Speedup of the parallel ELFM using MPI by a pessimistic approach.

code also runs on each individual workstation in the NOWs. Compared to the
results using Express, the performance of the parallel ELFM code is improved;
however, it is still unsatisfactory.

Since workstations are usually used as a multitask and multi-user system, the
workload varies from processor to processor and the execution time also varies
with different workloads. In order to analyze the performance of the parallel
ELFM, we focus on CPU time, rather than elapsed time. A process’s CPU time
is composed of two parts. One is known as user time, and the other is system
time. User time is the CPU time used while executing instructions in the user
space of the calling process, and system time is the CPU time used by the system
on behalf of the calling process. Most of computational costs are reflected in
the user time, almost the entire system time and part of user time are related
to interprocessor communication. The processor idle time is the actual elapsed
execution time less the user time and the system time. The idle time on each
processor is much larger than the user time and the system time.

In order to study the influence of the proposed algorithm on the perfor-
mance of the parallel ELFM, we first performed a simulation of the parallel
ELFM using checkpointing, but without rollback. In this model, processors only
synchronize at certain given checkpoints. The parallel ELFM with only check-
pointing synchronizes processors at each checkpoint. This is the ideal case of our
checkpointing and rollback algorithm. However, if a fire spreads to the adjacent
i i s in the NOWSs, the result will be in-
enhanced by reducing the checkpoint
as the one with a rollback process.
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Fig. 7. Program execution time of the parallel ELFM vs. synchronization fre-
quency in a 4-workstation NOWs.

The application of checkpointing and rollback techniques in the parallel
ELFM significantly reduces the interprocessor communication overhead of the
parallel ELFM program. Compared with the execution time of the parallel ELFM
without using checkpointing mechanism, the system time is greatly reduced.
Figure 7 compares the execution time of the parallel ELFM program with only
checkpointing to that with checkpointing and rollback.

Figure 8 shows the comparison in terms of speedup. A superlinear speedup
is obtained for execution only with process synchronization. Compared with the
serial ELFM code, the parallel ELFM code uses only a quarter of the mem-
ory that the serial version uses. This might be the reason for this superlinear
speedup. We can see that the execution time with checkpointing and rollback
takes a little longer than the one with only process synchronization. This is be-
cause the rollback process takes some extra time. Since the probability of fire
spreading and spotting between subdomains is small, the probability of a roll-
back process invoked is also small. When there is no fire spreading and spotting
during the process of simulation, the parallel ELFM with checkpointing and
rollback reduces to the parallel ELFM with only process synchronization. When
the process synchronization interval varies from 20 to 120 days, the speedup of
the parallel ELFM program fluctuates in the range of 2.6 to 3.7. The average
speedup is above 3. The performance of the parallel ELFM code is significantly
enhanced using the checkpointing and rollback techniques. Figure 9 shows the
landscape pattern after a 1-year simulation period. The grey area in the land-
scape indicates that fires have occurred in that area.
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6 Conclusion

In this paper, we have reported a study of parallelization of Everglades Land-
scape Fire Model (ELFM) using Message Passing Interface (MPI). The ELFM
code has been successfully ported to MPI. We have studied the checkpointing
and rollback techniques and have applied the synchronous checkpointing mech-
anism combined with the rollback technique to parallelize the ELFM code using
MPI. The simulation results show that a better speedup has been obtained com-
pared to the parallel ELFM code without using the checkpointing and rollback
techniques. The present study indicates that for certain type of parallel appli-
cations such as the ELFM, if the probability of interprocessor communication is
small, checkpointing and rollback techniques can enhance their performance.

Our future work will focus on generalization of the parallel computation
model with the mixture of a variety of asynchronous and synchronous computa-
tions. Parameters that affect the performance of the parallel applications, such
as synchronization cost, asynchronous and synchronous computation ratio, load
balancing, etc., will be studied both theoretically through numerical analysis
and empirically through simulation.
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Adaptation Models for
Network-Aware Distributed Computations *

Peter Steenkiste

School of Computer Science, Carnegie Mellon University
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Abstract. Network-aware applications actively adapt to the level of ser-
vice they receive from the network. This allows the application to execute
well over a diverse set of networks and under a wide range of network
conditions. However, network diversity and dynamic network conditions
make the development of network-aware applications a difficult task,
since the developer has to be an expert in both the application domain
and networking. In this paper we look at a number of network-aware ap-
plications and identify three adaptation strategies that have proven to be
effective. These strategies can be viewed as adapation models that cap-
ture the essential structure of the adaptation process. Similar to the use
of programming models in parallel and distributed computing, adapta-
tion models can be used to guide the development of other network-aware
applications and they can also form the basis for programming support,
e.g. middleware, that supports the development of network-aware appli-
cations. In this paper we describe the three adaptation models, compare
their features and applicability, and briefly discuss how these models im-
pact the design of middleware that supports network-aware applications.

1 Introduction

Clusters of PCs or workstations have become a widely used architecture for
compute-intensive applications because of their attractive price-performance ra-
tio. Clusters consist of a collection of high-performance PCs or workstations
connected by a commodity network. Clusters can be dedicated, i.e. they sit in a
machine room and are used exclusively for high-performance computing, or they
can be distributed and shared, i.e. the machines are scattered in offices, labs, and
machine rooms and are used for a diverse set of tasks. While both types of clus-
ters may have similar hardware characteristics, distributed clusters are a more
challenging environment, both because they typically are more heterogeneous
and exhibit a higher degree of resource sharing which results in a continuously
changing environment. This is especially true for the network, which is by na-
ture a shared resource, and where different technologies can have very different
performance characteristics (e.g. ATM versus 10 Mbs Ethernet). This presents

* This research was supported by the Advanced Research Projects Agency/ITO under
contract N66001-96-C-8528.
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a challenge to applications since the level of service they can expect from the
network is unpredictable. It can easily change by as much as three orders of
magnitude from one invocation to the next, and by a smaller factor during a
particular invocation. This means that communication operations can take any-
where from milliseconds to seconds depending on the environment and current
network conditions.

For some applications, e.g. telnet, the only possible response to variable net-
work conditions is to speed up or slow down proportionally with the level of
network service [6]. This type of “elastic” application can use protocols such as
TCP [11] to adapt to network conditions. However, more complex applications
often have a richer set of options for adapting to the network. A simple exam-
ple is a video streaming application. Changes in available network bandwidth
should not result in simply sending the same video data at a slower or faster
rate. Instead, the video source can respond by changing the video frame size
or the video frame rate. Similarly, in a congested network, a distributed com-
putation may want to reduce the number of nodes it uses instead of seeing its
communication time go up significantly. We call applications that actively adapt
to the level of service they receive from the network network-aware applications.

Developing network-aware applications is difficult because the developer must
have expertise in both the application domain and networking. Libraries and
middleware could potentially help applications adapt to network conditions, but
in the network-aware applications that exist today, the adaptation process is
mostly ad hoc and highly application-specific, complicating the design of broadly
applicable programming support. As a first step towards developing such mid-
dleware, we have to better understand the fundamental adaptation processes.
In this paper we argue that, while the details of the adaptation algorithms may
differ, existing adaptive applications mostly use one of a small number of “good”
adaptation strategies. The main contribution of this paper is that we identify
three such “adaptation models” that characterize widely applicable adaptation
strategies.

The rest of this paper is organized as follows. We first give some examples of
network-aware applications and describe the general structure of such applica-
tions (Section 2). In Sections 3 through 5 we present three different adaptation
models. We then discuss the relative advantages and disadvantages of the mod-
els, and their impact on the design of middleware (Section 6). We conclude with
related work and a summary.

2 Network-aware applications
We describe the general structure of network-aware applications using examples.

2.1 Examples

Applications can adapt to network conditions in a variety of ways. A first pos-
sibility 1s that the application changes how much data it sends. Data volume
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can for example be reduced by reducing the frame size of a video stream [10],
or by dropping the pictures from a document (plain text instead of postscript,
Web pages with or without images). Other ways of modifying how much data is
sent is to apply (lossless) compression; this approach trades compute resources
for communication resources. Another possibility is to use domain-specific adap-
tation methods. For example, when rendering an image on a remote node, the
source can transmit the rendered image or rendering commands, depending on
how much network bandwidth and computational resources are available.

The options for adaptation for distribution computing applications are typi-
cally much more restricted than the above examples may suggest. The reason is
that distributed computations typically want reliable data transfers so it is not
possible to drop data, while options such as compression are often too expensive.
However, adaptation is often still possible. For example, applications can change
what nodes or how many nodes they use. Examples are deciding to perform cer-
tain tasks locally or remotely [13], or determining the optimal number of nodes
to use for a distributed computation [17,18].

Application Data Data _| Application
(Sender) v Network "] (Receiver)

cI111

Adaptation A\ v
Decision Feedback

Fig. 1. The adaptation process

2.2 The adaptation process

The goal of network-aware adaptation is to optimize application performance,
given a certain level of service from the network. This process is illustrated for
a simple point-to-point application in Figure 1:

— A change in the network is observed at a measurement point, e.g. a switch
in the network or an application task running on the destination node. The
measurement point must measure the disturbance with a certain accuracy,
translate it in information that is of use to the application, and send the
information to the source or sources.

— The application makes a decision on adaptation, and waits until it can adapt.
Depending on the application this may be short, e.g. the next frame of a video
transfer, or long, e.g. the appllcatlon has to reach a synchronization point.

on the application this can happen

device, or it can be an expensive and
ate have to be moved between nodes.
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Figure 1 shows two different feedback mechanisms. With implicit feedback,
the application monitors the end-to-end performance of its own traffic, and
uses these observations to derive information about the status of the network,
e.g. dropped packets can be viewed as a sign of congestion by both protocols
(TCP [11]) and applications (vic [10]) or the throughput for a recent data trans-
fer can be used as an estimate for the throughput of future transfers. With
explicit feedback, the network provides explicit information about the status of
the network to endpoints. While explicit feedback is used in some communi-
cation protocols [1,5], it is not very common because of concerns that it may
add too much complexity to the network. However, there is a growing recog-
nition that explicit feedback can simplify the development of network-aware
applications [7,12].

The effectiveness of adaptation will depend on several features of the feedback
loop in Figure 1. A first factor is the delay in the feedback loop: the shorter the
delay, the better the application will be able to track changes in the network.
The second factor is the accuracy of the feedback information. Clearly inaccurate
information can degrade performance by having the application adapt needlessly,
or by having the application select an incorrect operating point. A final factor is
less obvious but quite significant in practice. There often is a cost associated with
adaptation, which means that improving efficiency by adapting may not always
result in a performance gain. To determine whether adaptation will pay off,
applications have to compare the cost of adaptation with the potential benefits.
The cost of adaptation and the performance gain can typically be estimated
based on information about the current and “optimal” state. The performance
benefit is typically proportional to time, so the condition for adaptation becomes

AdaptationCost < Benefit = Gain X Duration

Unfortunately, the duration of the benefit is typically unknown since it depends
on future conditions, e.g. network conditions could change immediately after the
adaptation operation. We conclude that in a best effort environment there is no
guarantee that adaptation will pay off.

2.3 Adaptation models

Whether adaptation is effective depends strongly on what adaptation decisions
the application makes, i.e. the nature of the application decision module in Fig-
ure 1. While the specific adaptation algorithms may be application-specific, we
argue that only a small number of mechanisms are used by today’s applications.
We will call these “adaptation models”, similar to the programming models used
in parallel and distributed computing. Identifying these models is a first step to-
wards providing programming support for adaptation. We identify three such
models in the next three sections.
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Fig. 2. Adaptation decision process

3 Model-based adaptation

In the first adaptation model, the application has a model of its performance
as a function of the various parameters characterizing the runtime environment,
e.g. network latency, ... Given information on the runtime environment, the
application uses the model to select the settings for the control parameters that
will give the best performance. We will call this model-based adaptation. We
elaborate on the methodology and provide some examples.

3.1 The adaptation decision

In the simplest case, the adaptation decision module has to select a single con-
trol parameter (e.g. increasing or decreasing frame rate), and there is a simple
relationship both between the control parameter and application performance
(e.g. higher rate is better) and between the control parameter and the required
network service (e.g. higher frame rates require more bandwidth) (Figure 2).
In general, multiple control parameters have to be selected, and the relation-
ship between application performance, control parameters, and network service
is complex.

The adaptation decision process can be captured in a few simple formulas.
The application performance P is a function p of the network conditions N and
the values of a set of control parameters C":

P =p(N,C)

The challenge is to find the values for C' that maximize P, given the network
conditions N.

In reality, neither the network conditions nor the dependencies between P,
N, and C are known and understood completely accurately. The following for-
mulation of the adaptation problem captures this uncertainty: given a measured
set of conditions N,,eqsured and a performance model p;,o4e; of the application,
determine the values C,,; for the control parameters that maximize performance,
i.e. Pmodel (Nmeasured, Copt) 18 maximized. Copy is a function of Nyeqsured:

ol Lalu fyi_ﬁl}.lbl

Nmeasured)
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In model-based adaptation, the function p,,.qe; is an explicit formula that is
derived by the application designer. c,oq4¢; is calculated by setting the derivative
of Pmoder With respect to C equal to zero, and by solving for C. This formula
for Cop: is then used by the adaptation decision module at runtime to calculate
the “optimal” values for the control parameters, based on the measured network
conditions. Information about network conditions can be collected by the appli-
cation by running a built in set of benchmarks, or from the network by querying
a special interface [7,13].

In reality using C,p will of course not result in optimal performance in any
formal sense. The systems involved are too complex to be modeled completely
accurately, SO Pmode; 1S only a rough approximation of reality preq;. Similarly,
noise, delay, and errors will cause Nyeqsured t0 be only an approximation of the
real network conditions N,.q;. Ideally, these effects will have little impact on
performance, i.e.

P = preal (Nreala Cmodel (Nmeasured))

is high and is not very sensitive to errors in Npeasured a0d Crmodel (1-€. Pmodel )-

The above equation also shows that adaptation is in general application spe-
cific since both ¢ and p are application specific. However, some components of
the implementation are application independent, so it may be feasible to develop
adaptation libraries that can be customized by the application. Collecting net-
work status information or a callback mechanism that notifies the application
of significant changes in network conditions are examples of support that would
simplify the task of application developers [7].

3.2 Examples

Most examples of model-based adaptation are in applications that make a sim-
ple decision based on a very simple application model. Examples include select-
ing the best file server or Web server for replicated data (highest bandwidth
wins) [4], or a decision on whether a computation should be off-loaded (available
bandwidth has to be above some threshold) [14].

A more complex application that uses model-based adaptation is described
n [17]. Tt is a Successive Over Relaxation (SOR) application that has been
distributed through pipelining (Figure 3). The input matrix is distributed in
block-column fashion across the nodes, with a one-column overlap between ad-
jacent blocks. The computation is pipelined: each node processes G rows before
it passes on new values for the shared column to its right neighbor and receives
values from its left neighbor. Given a data size and a number of nodes, the per-
formance is primarily determined by the grain size G. G determines how much
computation is performed between communication steps and its optimal value
dependspompthepperformancegofythemmetwork: as network performance increases,
smaller grain sizes become more effective since they reduce the pipeline startup
and drain cost.
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Fig. 3. Pipelined SOR

The application was made network-aware by building a model that represents
the execution time as a function of the grain size, the floating point performance
of the nodes, and the performance of the network, modeled as a per-messages
cost and a per-byte cost (see [17] for details). From this model one can derive
the grain size that results in the minimal execution time, as described above.
The optimal grain size is a function of the network and host parameters, which
are estimated by having the application execute small built-in benchmarks at
start up. Figure 4 illustrates how adaptation works. It shows how the efficiency
(inverse of the execution time) changes with grain size. The graph includes curves
representing measured efficiencies on a workstation cluster, estimated efficiencies
based on the application model and measurements of communication parameters,
and an upperbound on efficiency (communication cost is zero). The vertical line
represents the grain size that is selected by model-based adaptation. We observe
that it achieves close to the actual best efficiency. We found similar results for
networks with different performance characteristics [17,16].

Adaptation in SOR has two interesting features that seem to be quite com-
mon in distributed computations. First, adaptation is expensive, both because
the nodes have to synchronize and because they have to reshuffle a lot of applica-
tion data. This overhead limits the frequency of adaptation. Second, adaptation
tradeoffs are asymmetric. For the SOR application, it is better to underestimate
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Fig. 4. Model-based adaptation in SOR

3.3 Discussion

Model-based has the advantage that it can potentially quickly zoom in on the
right control parameter values. It can be used at startup time or at runtime to
periodically reevaluate control parameters during execution. While we have only
limited experience, a disadvantage of this approach seems to be its robustness:
the performance is very sensitive to both the accuracy of the network status
information and the correctness of the application model. Building an accurate
model is clearly difficult for complex applications, although one can argue that
some form of model will be needed for any method of adaptation. Getting reliable
estimates for the system parameters also turned out to be difficult. One of the
reasons is that appropriate estimates for system parameters are often application
specific, e.g. applications can have widely different floating point performance,
and network throughput may depend on features such as message size and pro-
tocols used. The SOR application deals with this issue by using segments of the
application to estimate the system parameters. While this give more accurate
estimates for the system parameters, it complicates application development.

4 Performance-based adaptation

In a second model, the application continuously monitors its own performance
and it changes its control parameters based on these observations. The control
parameters are typically updated incrementally, because there is not enough in-
formation available to explicitly calculate the parameters. While model-based
adaptation is based on explicit network information, performance-based adap-
i i i t the network implicitly.
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4.1 Examples

Congestion control in the widely used TCP transport protocol can be viewed
as an example of performance-based adaptation. It optimizes performance by
maximizing the rate at which it can send data reliably. If the receiver reports
data loss, the sender reduces its rate, on the assumption that the data loss
was due to network congestion, and reducing the rate will thus result in (more)
reliable transmission.

The prototypical example of application-level network-aware adaptation is
adaptive video streaming [19,8,9]. Similar to TCP, the video streaming applica-
tions try to maximize their throughput, while trying to eliminate or minimize
data loss. As with TCP, the receiver provides feedback to the sender about packet
loss, but in this case the sender will changes its transmission rate by changing
the frame rate or frame size of the video stream.

4.2 Discussion

The advantage of performance-based adaptation is its simplicity, at least for
applications that have a simple definition of “performance” that depends in
a straightforward manner on network performance. We are not aware of any
complex applications that fit this model. This approach does not need a detailed
model or accurate measurements of system parameters, and as a result, it is
likely to be fairly robust. A disadvantage is that this method is purely reactive,
i.e. the application adapts after performance has degraded. Moreover, changes
will typically be incremental because the application only has access to minimal
information on network conditions. Incremental adaptation can be expensive
if there is a non-trivial cost associated with adaptation. Finally, performance-
based adaptation typically supports only “one-way” adaptation: the application
can observe that it is overloading the network (observes poor performance) but it
cannot easily detect whether the network can support a higher load. A solution
is to periodically probe the network by increasing the load (e.g. increasing the
frame rate), using the effect on performance (e.g. presence or lack of packet loss)
to determine whether the network can handle it. Probing can be difficult to
manage and introduces extra overhead.

5 Feature-based adaptation

In a third model, the application monitors some feature of the application and
uses that to adapt. This is possible if the feature has a known “good value” that
correspond to a good application state, and deviations can be translated into
changes of the control parameters. We will call this feature-based adaptation.
This can be viewed as a generalization of the previous model, in the sense that
performancerisranyapplicatiomfeaturessHowever, by picking the feature carefully,
it might be possible to achieve more desirable adaptation behavior. Improve-
ments are possible in two areas. First, it might be possible to adapt before there
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has been a significant loss in performance, i.e. adaptation may be preventive
instead of reactive. Second, adaptation is possibly symmetric, i.e. adaptation
can increase and reduce the load on the network without having to periodically
probe for additional resources.

5.1 Example

An example of feature-based adaptation in transport protocols is TCP Vegas [3].
TCP Vegas continuously monitors the roundtrip time, and compares it with a
roundtrip time estimate that is based on a model of the roundtrip time as a
function of throughput. By comparing the measured and estimated roundtrip
time, the sender can determine how its rate compares with the available rate on
the bottleneck link, so it can adapt without having to wait for packet loss.
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Fig. 5. Optimal communication to computation ratio in MM

An example of application-level feature-based adaptation is described in [18].
The problem addressed is determining the optimal number of nodes for a distrib-
uted matrix multiply. A first solution is to use model-based adaptation. While
model-based adaptation works, it is very sensitive to the measurements of the
system parameters, as we already observed for the SOR, application. An alterna-
tlve is to use feature—based adaptatlon using the communication to computation

Agydescribed in [18], for a certain class of

n constant when the optimal number
i etwork conditions. For the distributed
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matrix multiply, the communication to computation ratio is one when the opti-
mal number of nodes is used. This is illustrated in Figure 5. So by monitoring
this ratio, and increasing (decreasing) the number of nodes if the ratio is higher
(lower), one can stay in a good operating point.
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Fig. 6. Performance for the network-aware MM: number of nodes (left) and
execution time (right)

Figure 6 compares the performance of both model-based and feature-based
adaptation with the experimentally-determined best performance. We observe
that both mechanisms do a good job estimating the optimal number of nodes,
and the execution times are close to optimal.

5.2 Discussion

Feature-based adaptation shares many of the characteristics of performance-
based adaptation. One difference is that it does not require probing. It is how-
ever not clear how easily this approach generalizes: it is difficult to identify an
application feature that reliably indicates how well the application’s current use
of the network fits the network conditions. Note also that neither performance-
based nor feature-based adaptation work at all for adaptation at startup, since
the methods are based on feedback from a running application.

6 Applicability of the adaptation models

We can highlight the differences between the three models by presenting them
as simple control loops, as is shown in Figure 7. Performance-based adapta-
tion has the simplest loop (Figure 7(a)): the receiver provides feedback on the
observed performance and the adaptation module in the sender uses this infor-
mationytopchangesthessettinggofythegcontrol parameters. This is only possible if
the appropriate control parameters can be derived directly from the observed
performance.
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to the wrong operating point. However, selecting an appropriate feature may
simplify adaptation compared with performance-based adaptation.

Figure 7(c) shows the control loop for model-based adaptation based on infor-
mation provided by the network. We note that there is no closed-loop feedback:
application-level adaptation is done open loop. This means that both the adap-
tation decision process (based on an application model) and the measurements
have to be fairly accurate, otherwise the adaptation process can easily go astray.
Figure 7(d) shows model-based adaptation based on information collected by the
application. This is still an open loop process: the benchmark typically does not
characterize end-to-end application performance but only tries to characterize
the network. However, the benchmark can be customized by the application,
increasing the level of confidence that appropriate data is being collected.

Figure 7(a), (b), and (d) can be viewed as three points on a spectrum. The
variable in the spectrum is what fraction of the application is “covered” by the
feedback loop.

Robustness| Timeliness | Nature of | Locality

adaptation |information| adaptation |information
Performance high low incremental local
Feature medium medium |incremental local
Model low high jump broader

Table 1. Features of different adaptation models

Based on these differences in the models, we can make some high-level obser-
vations about the applicability of the models. Table 1 lists some important fea-
tures of each of the models. Robustness characterizes what fraction of the appli-
cation is covered by the closed loop feedback, as we described above. Timeliness
characterizes how quickly the application can learn about changes in network
conditions. In general, the simpler the feedback loop, the quicker it can respond.
This means that benchmarks are likely to provide feedback more quickly than
complete applications, although benchmarking is not likely to be a continuous
activity. Feedback based on monitoring may give the quickest response. The last
two features affect the type of information that is collected. Performance-based
and feature-based adaptation provide “relative” information that in general only
allows incremental adaptation. Model-based adaptation uses absolute informa-
tion that in principle should allow the application to move directly into an opti-
mal operating point. The information obtained as part of performance-based and
feature-based adaptation is also limited in scope (i.e. whatever network informa-
tion is observable through the performance or feature) and restricted to the part
of the network used by the application. In contrast, model-based adaptation can
use a broader set of information.

'We conclude that all the models have both desirable and undesirable features,
and which model is most appropriate will depend on the application and the
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environment. The features in Table 1 provides some guidance. Application may
benefit from using a combination of models. Model-based adaptation can be used
to select an appropriate operating region from a potentially very large space of
operating options that cover both network topology and application set up; this
can be done at startup and periodically throughout execution. More frequent
incremental runtime adaptation can be based on the performance or feature-
based models.

7 Middleware support for network-aware applications

We discuss a number of ways in which middleware can support network-aware
applications.

7.1 Network information

The simplest way in which middleware can help network-aware applications is
to provide information about the network conditions. This is especially true for
applications that use model-based adaptation since they rely critically on precise
low-level network information. If the application can simply query the network
to find out about network properties such as application-level throughput and
latency, then it does not have to do its own benchmarking. This should simplify
code development significantly, and will also reduce the level of network expertise
needed by the application developer since network benchmarking is a difficult
task. Applications will often be interested in different types of information, e.g.
delay versus bandwidth or behavior on different time scales, so network should
provide access to a rich set of information.

Another feature of adaptation that should be considered when developing
middleware is that adaptation tradeoffs are often asymmetric, so the application
would like to know the accuracy of the information. For example if the network
information is highly variable, the SOR application would lower its estimate of
the available network bandwidth (more conservative), while it might be more
optimistic if the bandwidth estimate is known to be accurate.

The Remos interface [7,12] developed at CMU is a first attempt at defining
the application programming interface for such a middleware layer. It has been
implemented and is being evaluated.

7.2 Application structure

Making an application network-aware requires profound changes in the appli-
cation structure. An interesting approach to simplifying this task [2] is to use
frameworks to capture the control flow of the adaptation process. Application
can fill in the application-specific components. Figure 7 shows graphically some
possiblesstructurespforssimplespoint=to=point applications. Clearly, a richer set of
options for adaptation exists for multi-party applications with more than two
end-points. The middleware layer could for example coordinate the movement
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of data (state) that has to happen as part of the adaptation, or it can provide
the necessary synchronization between the nodes involved in adaptation. Much
more work is needed in this area.

7.3 Service selection

An important issue for any network-aware application is the predictability of
network conditions. If network conditions are very unpredictable, effective adap-
tation will be difficult, if not impossible (Section 4). This suggests that we should
build networks that have more predictable performance. The networking commu-
nity is addressing this problem by implementing networks with multiple classes
of service [6]. Besides best effort service, which is what today’s networks support,
networks can for example support guaranteed service [15], which offers highly
predictable service, albeit at a higher cost. Another example is controlled load
service [20], which maintains a minimum level of service for applications by lim-
iting the number of users in the network. So far, there is little experience in
using these service classes.

8 Conclusion

Network-aware applications actively adapt to the level of service they receive
from the network. In this paper we take a first step towards providing struc-
tured support for network-aware applications by identifying three adaptation
models that capture the essential properties of effective adaptation. Model-based
adaptation uses a performance model of the application and measurements of the
network conditions to determine the optimal operating point for the application.
Performance-based adaptation is based on monitoring application performance
and adapting if the performance drops. Feature-based adaptation is a general-
ization of performance-based adaptation: adaptation is based on an application
feature other than performance. These adaptation models have very different
properties, but they each have some advantages that make them attractive to
some applications.
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Abstract. The Hybrid Technology MultiThreaded (HTMT) project is
an attempt to design a machine with radically new hardware technologies
that will scale to a petaflop by the 2004 time frame. These technologies
range from multi-hundred GHz CPUs built from superconductive RSFQ
devices through active optical networks and 3D holographic memories
to Processing-In-Memory (PIM) for active memories. The resulting ar-
chitecture resembles a three level hierarchy of “networks of processing
nodes” of different technologies and functionality. All this new technol-
ogy, however, has a huge and unknown effect on software execution mod-
els for applications. This paper discusses several potential HTMT models
and how they can be prototyped and demonstrated using a combination
of multithreaded Java and LAN-connected workstations.

1 Introduction

The ASCI program [1], [2] represents the state of art of high performance com-
puters with several thousand microprocessors where the total performance peaks
in the teraflop range (1012 flops/sec). The problem with this and similar systems
is the latency in memory access and in communication between nodes. As a re-
sult, software development for ASCI is challenging. If we look to the next level
of performance, petaflops (10'° flops/sec), projections of machines using con-
ventional CMOS technology indicate that even by the 2010 era, over a million
1GHz CPUs will be needed in a complex interconnection scheme.

The HTMT project [3] is a solution to the hardware problem in a way that,
hopefully, simplifies the software problem. Its focus lies in an attempt to design
a machine with radically new hardware technologies that will scale to a petaflop
by the 2004 or earlier. Its goal is to have a working machine 5 to 10 years earlier
than such performance levels might be possible with conventional CMOS.

In terms of effects on a software model, HTMT introduces multithreading
in parallel CPUs, extremely deep memory hierarchies, and active memories to
counteract the resulting extreme latencies.

This paper attempts to define several high-level concurrent programming
modelspthatymatchydifferentpkeyspointsyof the HTMT architecture, and develop
a framework for constructing reasonable prototypes today that can be used for
early software demonstrations, with Java for implementation.

A. Sivasubramaniam, M. Lauria (Eds.): CANPC’99, LNCS 1602, pp. 32—46, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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The rest of this paper is organized as follows. Section 2 provides an overview
of the HTMT project. Section 3 discusses software models that potentially may
fit the HTMT model. In Section 4 different schemes are suggested for simulated
HTMT execution models. Section 5 outlines the opportunities for concurrent
programming that can be expressed in Java. Section 6 discusses the HTMT
programming prototype. In Section 7 prototype demonstrations are considered
and implementation is discussed. In Section 8 we draw some conclusions from
the discussion and show extension to this work for the future.

2 HTMT: the ultimate “network” computer

The goals of the current HTMT project [4] are threefold.

First, it will explore and characterize a synthesis of exotic technologies, in-
novative architecture, and aggressive latency management techniques in a way
that could dramatically accelerate availability of near Petaflops scale computing
systems. Second, it will develop component, architecture, and design data to
minimize future design risk and establish confidence in the approach. Third, it
will determine the feasibility and effectiveness of the HTMT strategy for exe-
cuting real world computations at revolutionary performance level. A successful
HTMT program will lay the groundwork for prototypes in the 2004 time frame
that achieve near petaflops level performance, with much less than million-way
physical parallelism.

2.1 HTMT hardware architecture

HTMT is a shared memory nonuniform memory access (NUMA) architecture.
There are multiple levels to the memory hierarchy with the lowest level physically
partitioned to individual processors. All the processors share the same address
space; however, the time it takes processors to access different memory locations
at different levels varies greatly.

The HTMT architecture consists of the following components (Fig. 1):

— 4096 multithreaded CPUs, called SPELLSs, constructed from RSFQ (Rapid
Single Flux Quantum) superconducting devices with special cache like local
memories called Cryo RAM (CRAM), cooled in a cryostat to 4K, and capable
of clock rates in excess of 100 GHz. These memories are connected to the
next level through an RSFQ-implemented communication network (CNet),

— very high bandwidth optical networks with 10 Gbps channels to interconnect
components in the cryostat with external components,

— “smart” SRAM and DRAM memories based on PIM technologies on either
side of the optical network,

— 3D holographic memories for extremely dense and fast on-line backing stor-
age that capable of storing Petabytes or more.

The smart memories use the Processing-In-Memory (PIM) technology to com-
bine on a single CMOS memory chip both dense logic and dense memory [3], [5].



34 Lilia Yerosheva (Suslov) and Peter M. Kogge

Level 3 Level 2
3D holographic <—>| Ma551vely Parallel DRAM PIM |<—>I/O
memory - 1 -1

Optical Networklng (Petabits/sec)
swnch with 25,000 ports

Level 1 -]
Cryostat | Massively Parallel SRAM PIM |1
Different chip =
| [srav pmeero] |- -~ -
(I S—_—————— 1 |
7 CNet: interconnection network with 20 Petabits/sec bandwidth g
CRAM CRAM CRAM
1MB; 1MB; 1MB
Level 0 —_—(_—_)—_| —_—(_—_)—_l ... —_—(_—_)—_l
SPELL 1 SPELL 2 SPELL 16

Fig. 1. HTMT architecture

This simple trick has a profound impact on computer architecture: if the logic is
used to construct CPU-like devices, these CPUs are much closer electrically to
the memory arrays containing instructions and data. Furthermore, the number of
bits available from each access can be literally orders of magnitude greater than
what one can transfer in a single cycle from today’s conventional memory chips
to today’s conventional (and separate) CPU chip or cache system. Together, this
greatly reduces memory latency and greatly increases memory bandwidth - the
twin demons of modern computer design. One example of the kind of process-
ing logic that will be implemented in the PIMs are Move engines which allow
automatic data transfer between different memory areas over the networks.

As an example of the kind of latencies that show up in HTMT, if the SPELLSs
run at 100 GHz, the latency to the CRAMs is on the order of 10’s of cycles, to
SRAM is 100s’ of cycles, 10,000 to 100,000 cycles to DRAM, and millions of
cycles to 3D memories. Note that having 100 GHz CPUs (vs. 1GHz for CMOS)
means that much less parallelism is needed out of applications. This is good,
but at the same time memories do not speed up 100 times, leaving more levels
of memory hierarchy and huge access latency. The PIM enabled memory hierar-
chy counteracts this by active pushing data down the hierarchy before SPELLSs
request it. Our software models and prototypes must mimic this.

When we look at modern conventional designs, we see a variety of common
speedup techniques (such as out-of-order execution, register renaming, spec-
ulation) most of which were considered and discarded from HTMT because
of complexity or lack of focus on the real design challenge - memory latency.
Multithreading is a competing approach that exploits parallelism in processor
architecture and directly attacks the latency issue. Consequently it forms the
basis for much of the HTMT SPELL design. Threads in a SPELL can run con-
currently, and can be executed in parallel by separate execution units. Stalling
onvanthreads-becauserof smemoryslatency, does not stall the entire processor.
Other threads utilize the hardware. The same is true of code running locally in
the PIMs.
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Memory management The HTMT system will use sophisticated memory
management hardware to move data throughout the memory hierarchy and sat-
isfy the latency and bandwidth needs of the SPELLs. This feature is incorporated
into the HTMT threading model. Instead of moving individual elements of data
within the memory hierarchy, HTMT will manage complete contexts, includ-
ing data, program instructions, and control state. In the HTMT multithreaded
scheme the contexts migrate automatically through the memory hierarchy so
that SPELLs always have access to executable contexts with ready data in buffer
in the CRAM with minimal latencies. This technique is called percolation. Con-
text percolation from DRAM, through SRAM to CRAM will be controlled by
processors in the PIM chip. Within this percolation model, the processors in
the SRAM and DRAM PIMs take on different rules, as pictured in (Fig. 2) and
(Fig. 3).
The functions performed by programs in the DRAM PIMs include:

— transferring complete data sets between DRAM memory, disks, and 3D mem-
ory (employing compression and decompression in the process),
— transferring selected subsets of data objects to different SRAM contexts,
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— performing synchronization operations to recognize when all intermediate
results from a set of processed context have arrived back in DRAM,
— performing simple operations on large data structures.

The functions performed by the programs in the SRAM PIMs include:

— keeping track of usage of buffers in both SRAM and CRAM,

— selecting free buffers to be filled with data from DRAM, providing the DRAM
the addresses of these buffers, and recognizing when all data has arrived,

— moving full buffers of data into ready queues for each SPELL, initiating
DMA transfers from SRAM to CRAM buffers, when a free CRAM buffer
has been identified, and then signaling the SPELL that the buffer is ready,

— recognizing when a SPELL has declared a CRAM buffer processed and start-
ing a DMA transfer of the results from that CRAM to a free SRAM buffer,

— when a DMA has completed, to start scattering the results in a SRAM buffer
back into DRAM, or to other SRAM buffer,

— when all results has been scanned from a SRAM buffer, to move it to free
areas, so this can be refilled, and process restarted.

SPELL processor We consider two different types of SPELL level processes:
threads and strands [6]. A thread is associated with a separate context, buffer or
a frame, of function parameters and local variables. Threads can run in parallel
on a single SPELL, can be created and destroyed at runtime, and can create new
threads. A frame is a block of memory with a collection of registers for holding
intermediate data. The frame is used as a storage (like stack within a thread)
of local variables. Each thread is associated with its own context that can be
activated simultaneously. The frames are dynamic, and linked to one another in a
non-linear structure. A strand is a block of instructions grouped together by the
user (or compiler ) to become a scheduling quantum of execution. It is enable at
runtime by a thread when all necessary dependence, data and control, constraint
are satisfied. Multiple strands can be activated within a single thread, and all
share the register frame associated with that thread. 16 threads in a SPELL share
CRAM memory and can access one context at the time. Each thread supports
8 strands. The strands in the SPELL execute the instructions. Data is divided
between strands. When all strands per one thread are “done”, the thread sends
the resulting data back to the memory and checks for a new available thread.

3 Parallel software models and paradigms

Manypparallelyprogrammingymodelspandyparadigms have been introduced in the
last three decades, virtually all of which resemble some level in the HTMT
system. The following paragraphs briefly describe several of these.
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3.1 Multithreading

Modern multithreaded architecture models support the potential of simulta-
neous exploitation of parallelism at all levels (e.g. fine, medium, and coarse-
grain), and an efficient and smooth integration of interprocessor communica-
tion/synchronization with computation. Multithreading has been proposed as a
promising processor execution model to overcome latencies in parallel machines.
The basic unit, a thread, is a unit of control for parallel execution. It has its
own registers, may have its own stack, but typically shares address space with
other threads. A thread may be created at any point of the program where an
independent stream of control is needed and all data required by the thread is
available. When one thread is suspended because of a long latency access to
memory, another thread may be executed by the hardware at the next machine
cycle. During the execution, the threads in a sequential code cooperate to solve
a given problem; they are dynamically created, asynchronously scheduled ac-
cording to data and control dependences, and concurrently executed. From the
programmer’s view, the threads can run simultaneously, and even on a single
processor they can increase efficiency (and thus, throughput) during execution,
such as in case of a shared data model when one thread is waiting for some event
(input/output, task completion by other threads, etc.) and another is ready to
compute.

Looking at HTMT, multithreading is explicitly part of the SPELL architec-
tures [7]. In fact, each SPELL has two such levels of multithreading - threads
and strands. It also may play an important role in the PIMs, especially DRAM,
where access to data for multiple threads from RSFQ will need to be concurrent.

3.2 Client-server model

The idea behind this model is to structure the system as a group of cooperating
processes, called servers, that provide services to the user processes, called clients.
The machine may run a single process, or it may run multiple processes on
multiple clients or multiple servers, or a mixture of the two.

To avoid the considerable communication overhead, the client-server model
is usually based on a simple, connectionless request/reply protocol. The client
sends a request message to the server asking for some service. The server does
the work and returns the data requested or an error code indicating why the
work could not be performed.

In HTMT the PIMs, especially the DRAM-based PIMs, are so far away
from the SPELLs (latencies are huge) and will have so much internal processing
capability that HTMT programming models may wish to view them as some
sort of servers with the programs running in the SPELLs as clients.

3.3 Message-passing

A communication network provides a means to send raw bit streams of data be-
tween nodes in distributed memory parallel system. The message-passing model
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provides two basic primitives over such a network: send and receive. Send has
two parameters, a message and its destination. Receive has two parameters, the
source of a message and a buffer for storing the message. The message-passing
model provides a highly flexible communication capability, and involves the fol-
lowing functionality: pairing of responses with request messages, data represen-
tation mechanism, resolving the addresses of clients and servers, and also taking
care of communication and system failures.

In the HTMT model, variations of messages are being designed, including
parcels. A parcel is an active message [3], [9], [10]. It is a logically complete
grouping of the information that initiates work on the HTMT units and can
result in creation of new parcels. Message-passing can occur in different places:
between CPUs, as a part of client-server model over the optical network, or
inside PIMs, as message-passing between nodes in the memory.

3.4 Remote Method Invocation

Remote Procedure Call (RPC) and Remote Method Invocation (RMI) [11] allow
programs to call procedures located on other machines. When a process on ma-
chine A calls a procedure on machine B, the calling process on A is suspended,
and the execution of the called procedure takes place on B. Information can
be transported from the caller to the callee in the parameters, and can come
back in the procedure result. No message passing or I/O at all is visible to the
programmer.

In HTMT, for reasons similar to that for the client-server model, it may be
appropriate for RMI-like calls to be made by the SPELLs to be executed in the
DRAM PIMs. This is especially relevant for operations which require multiple
data accesses, but little processing per access, such as object construction and
initialization, pointer-chasing, garbage collection, or even simple matrix opera-
tions such as scaling rows, columns, or subarrays.

3.5 Object-based distributed shared memory LINDA paradigm

Linda is a parallel programming paradigm based on an abstract “tuple space”
that functions as a kind of data base. The tuples can be of two types: data and
patterns. Data tuples consist of multiple fields much like a conventional data
base. Pattern tuples consist of conditions to match (like a query in a database
system) and the name of the process that created the pattern. The tuple space is
global to the entire system, and processes on any machine can insert/remove or
search for either type of tuple without regard to how or where they are stored.
To the user, the tuple space looks like a big, global shared memory, but the
implementation may involve multiple servers. This memory is accessed through
a small set of primitive operations that can be added to existing languages [12].

The HTMT is a distributed shared memory model with significant processing
ingthepmemorysThuspthessearchpandsmemory management functions of LINDA
could be done in parallel in the PIM memories of either SRAM or DRAM levels.
A prototype of such a PIM system has been constructed [13] and demonstrated.
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4 Prototyping HTMT models

An HTMT machine with a huge number of embedded multilevel PIMs and mul-
tithreaded SPELLs, running in parallel and interconnecting through a network is
a new architectural model. The HTMT hardware is being designed to minimize
the effects of latency, but as a result, it needs an alternative software support.
Depending on the physical form of communication between processes running
on different SPELLs, two subclasses of HTMT software models might be dis-
tinguished: 1) shared memory where the SPELLs all “see” the same memory
directly, and 2) communicating process architectures (distributed multi proces-
sors) where the processors are logically connected through a communication net-
work, and access to different objects may require intermediate communication.
Searching for programming models that will match the HTMT architecture and
the best possible performance, and yet still allow “non-heroic” programming of
real applications led us to consider a list of “real world” problems, to create a
library of possible models, and to consider how to demonstrate those models in
Java on a cluster of workstations.

4.1 “Client-server like” models

Let us first consider the following scheme for simulating real life applications on
HTMT. The interaction between any two levels in the HTMT hierarchy (DRAM
and SRAM PIMs, or SRAM PIM and CRAM SPELLs) is treated as a client-
server relationship. In this scheme each client signs on a server, which assigns jobs
and returns necessary data. Then, clients execute their portion of the original
task (via processing in the SPELLs) and transfer results to the server for further
manipulations. The server can execute some tasks itself at the same time using
its own concurrent threads. Depending on what level of memory we choose, two
special cases of this model are possible.

In the first scheme server and multiple clients do not share memory. In this
case, each client sees data that were sent from server and executes only a task
which is assigned by the server. The server provides all service to the multi-
ple clients, and distributes data between them. The server is implemented as
a multithreaded system with multiple threads to handle sending and receiving
messages for each client during the data exchange process, and also to control
the execution process.

Relating the HTMT model to the above scheme, we have to consider the
architecture along with the structure of the new computer. The portion of
the HTMT design that fits into this scheme consists of multiple multithreaded
DRAM servers that provide the necessary data to the multiple multithreaded
SRAM PIM clients, which, in turn, manage and control the execution process for
the next level of HTMT system. The DRAM servers provide the initial support
forsthreadspercolationrandstorguaranteesrcliable service for multiple clients [7],
especially in terms of synchronization. Organizing multithreaded models in such
a way will allow us better control of execution and will simplify the scheduling
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Fig. 4. Prototyping the SRAM-CRAM level of HTMT

mechanism. Fast datagrams over the optical network are suggested as a commu-
nication mechanism in this scheme, and the communication process will be the
main topic in consideration. Similarly, the SRAM PIM - SPELL relationship for
this scheme can be viewed as a socket communication relation through assigned
SRAM PIM ports for SPELLs.

In the second scheme server and multiple clients share the memory. For this
case, server and client see the same data in the memory. This model provides
a virtual address space that is logically shared among physically distributed
server(s) and client(s), and mirror the SRAM/ SPELLs interaction (via simple
LOADs and STORESs operations and parcels) in realistic ways (Fig. 4).

In this scheme each multithreaded server in the DRAM PIMs can explicitly
exchange data over the optical network with the SRAM memory in the SRAM
PIMs, without a datagram protocol. The same may be true for the SRAM PIM
clients and DRAM memory. The major client-server interchange here is for syn-
chronization, supporting RMI calls, exchange of acceptable buffer addresses for
the transfer, and completion signaling. This model does not require the ex-
tra communication threads for sending and receiving messages (especially data)
across network, but it still needs mechanisms to distinguish between processes
on clients and servers in order to provide the correct data exchange and a control
for reliable scheme of interaction.

5 Using Java and its packages as a basis for concurrent
prototypes

We chose Java as a programming framework for exploring HTMT programming
models, especially those derived from the PIM-enhanced memory hierarchy, be-
cause of its unique features to support different kinds of concurrency and its
growing use in the distributed and parallel programming environment [14], [15].
This section briefly describes some of them.

5.1 Threads

Java provides easy-to-use features for synchronization that make programming
easier. Java threads are usuallyl mapped onto real operating system threads if
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the underlying operating system supports this action. On a computer with only
one processor, threads aren’t actually processed in parallel. Rather, at regu-
lar intervals or when the thread is waiting for something, the computation will
switch from one thread to another. This gives the appearance of parallelism. On
computers with multiple processors, such as a modern SMP node, there is poten-
tial for real parallelism if the underlying system supports it. Thus applications
written in Java are MP-hot, which means they will run concurrently if they are
executed on multi-processor machine.

5.2 Datagrams

The Uniform (User) Datagram Protocol (UDP) protocol provides a mode of
network communication whereby applications send packets of data, called data-
grams to one another. The DatagramPacket and DatagramSocket classes in the
java.net package implement system-independent datagram communication us-
ing UDP. Sockets for Clients can be used to connect Java’s I/O system to other
programs that may reside either on the local machine or any other machine
on the Internet. Socket classes are used to represent the connection between a
client program and a server program. The java.net package provides two classes
Socket and ServerSocket that implement the client side of the connection and the
server side of the connection, respectively. A ServerSocket will wait for a client to
connect to it, whereas a Socket will treat the unavailability of a ServerSocket to
connect to as an error condition. Sockets for Servers will wait at known addresses
and published ports listening for either local or remote client programs.

5.3 RMI - Remote Method Invocation

RMI in Java enables programmers to create distributed Java-to-Java applica-
tions, in which the methods of remote Java objects can be invoked from other
Java virtual machines, possibly on different hosts. A Java program can make a
call on a remote object once it obtains a reference to the remote object, either
by looking up the remote object in the bootstrap naming service provided by
RMI or by receiving the reference as an argument or a return value. A client can
call a remote object on a server, and that server can also be a client of other
remote objects.

Object Serialization extends the core Java Input/Output classes with support
for objects, and is used to save, send and restore object instances. Object Seri-
alization supports the encoding of objects and the objects reachable from them
into a stream of bytes, and the matching reconstruction of the object graph from
the stream on the decoding end. Serialization is used for lightweight persistence
and for communication via sockets or RMI [16]. The default encoding of objects
protectspprivategandptransientpdataspand supports the evolution of the classes.
A class may implement its own external encoding and is then solely responsible
for the external format.
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5.4 Java wrapper for MPI

The Java wrapper for MPI consists of a small set of classes with a lightweight
functional interface to a native MPI implementation. The classes are based upon
the fundamental MPI object types (e.g. communicator, group, etc.). There is a
one-to-one mapping between MPI functions and their Java wrapper bindings.
The Java wrapper for MPI functions are method functions of MPI classes.

6 The HTMT programming prototype

There are four reasons for building a prototyping model. First, it can show that
we can built “correct” code for complex hierarchical concurrent systems like
HTMT. Second, we can estimate how much computing resources are needed
to simulate even small HTMT programs in a reasonable period of time. Then,
we can derive statistics about concurrency and data distribution process in the
system that could be useful to the HTMT design community. Forth, creating
this prototype model helps to identify and to build a generalized tool set that
allows a variety of other HTMT algorithms to be modeled.

In our demonstration prototype we model five units which represent the
HTMT modules: DRAM, SRAM, MOVE engine, CRAM, and SPELLs.

Initially, a daemon thread in a SPELL signs to a server (SRAM PIM). In
the HTMT execution model this thread may access the register set and CRAM,
and supports thread creation, synchronization, communication, and termination.
This thread can address CRAM explicitly and directly. It is up to the program-
mer or compiler control to support those functions. In our programming model
this thread also supports the availability of the contexts through the check of
values of counters (registers in the SRAM PIMs that count down as data ar-
rives in contexts). If the value is equal to zero, then all data is available and the
context is ready to be executed. This scheme needs to support a lot of synchro-
nization mechanisms for strands and thread memory accesses. It is very close to
the architecture execution flow and can be considered as a model to study the
flow in HTMT system for parallel algorithms.

6.1 The present model

The current structure of the HTMT model consists of the following software
components, each represented by a Java object with multiple methods:

— DRAM level models the storage of contexts and context percolation.

— Optical Network models datagram transfer between DRAM - SRAM PIMs.

— SRAM level object models the frame of context storage, “simulates” the data
transfer process to and from CRAM through CNet using sockets, and sends
data back to DRAM using datagrams.

— CNET: implementation of client - server model to support SRAM PIM -
SPELL communication.
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— CRAM level models the data storage and communication between SRAM
and SPELLs via IN and OUT queues.

— SPELL level: assigns jobs to threads, distributes work between strands at
thread level, and sends results back to SRAM via OUT queue.

6.2 Hardware environment

Three UltraSparc Sun workstations provide the engines to run prototype in-
terconnect communication and socket interface between different levels of the
HTMT. Two workstations were used as hosts for SPELL processors. The third
machine was used to simulate the SRAM PIM as a server for SPELLs, and
provided the interface for data transfers. This configuration can be easily ex-
panded to more machines to simulate the larger set of SPELL processors in the
model, and modeling even larger problems increasing the number of SRAMs and
DRAMs.

7 Prototype demonstrations

As a demonstration platform for prototyping these models, we are writing a
variety of multithreaded, multiple level client-server models in Java. The relative
performance numbers of the setup being used is in approximately the same ratio
as the HTMT will have, although 1000 times slower in actual numbers, and
nowhere near the parallelism present at any level of a full HTMT. Using a 150
MHz SMP to simulate a single 100 GHz multithreaded RSFQ node gives about
the same ratio as our 10 Mbps switched Ethernet is to the 10 Gbps optical
channel. Servers and other PIM functions are simulated as programs for the
SMP nodes.

We considered several Java applications for demonstration of the HTMT
parallelization mechanisms using the two schemes that were described in the
previous section. First, we considered Fox’s proposed set of petaflops kernels [7],
[17], [18], [19]. For each problem we considered the parallelization algorithms
that will match the suggested schemes for client-server model and found the
ease of implementation with the Java object-oriented language. Those examples
were directly mapped to the multithreaded programming model.

Matrix Multiplication was also implemented in Java as a candidate for an
“ideal” model for comparing the performance of a new architecture with existing
machines that fit the considered scheme.

In all examples, the clients and server first shared data consisting of initial
matrices, and clients requested data. Multiple threads on server and clients were
responsible for different data elements of the given matrix and for control of data
flow. Each client executed its portion of multiplication (row and column) and
the server printed the result.

Instheothercasegtheclientsiandiserver did not share memory, and all sending-
receiving mechanisms involved the intercommunication mechanism (datagrams).
Java provides the necessary interface to implement this fairly simply, giving
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Fig. 5. Matrix multiplication data flow

difficulties only in distribution of data between clients and in the synchronization
of execution process.

7.1 Matrix multiplication example algorithm

Let us consider the simple matrix multiplication data flow during execution
process in our HTMT programming prototype (Fig. 5).

Each context contains the following information: the program code multiplies
one row by a single element, the data consists of a row of numbers and an
element of the column, plus a pointer to where the result should go, and control
information including of context number, time stamp, etc.

Each strand multiplies one element in the row by one element in the column.
(A trivial extension replaces the single element by single element multiply by a
small submatrix by submatrix product that fits in registers). The last strand puts
the sum of the products in the output queue for CRAM with the completion code
(“done”, “intermediate”,...). This data can be used for further calculations or can
be stored in SRAM / DRAM. The SRAM / DRAM servers create these contexts
and percolate them up and down the simulated memory hierarchy (Fig. 6).

7.2 The implementation and results

A Java program simulates execution of contexts with Java multithreading mod-
eling the strands. This code is currently running, and we are in the process of
adding implementation to it to allow some actual statistics to be fed back into
the HTMT hardware and architecture design process.

Analysis of our programming model had shown that the number of messages
in the system grows linearly. For matrix size 1000x1000 in our model with es-
timate a message size of 164 bytes (one context per message), the number of
messagesjonlysthroughs DPRANM=SRAMslevel will be close to one million. It shows
the necessity of very high speed network and well balanced algorithms for this
HTMT system. Our design also shows that multiple level interleaving in the
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HTMT system makes it very difficult to estimate time spent during execution
in the system. Studying dynamics of other algorithms for the HTMT machine
will help us to understand the nature of this system and develop an approach
to quantitative analysis of the HTMT.

8 Conclusions and future work

In this paper we introduced the HTMT computer architecture and developed a
combination of existing parallel protocol paradigms that neatly match this new
design. The implementation of these paradigms in Java allows early insight into
how real algorithms need to be structured for such a machine, and the kinds of
support functions that need to be built into the hardware, especially the PIMs.

Our future work will involve the consideration of new, more elaborate mod-
els, especially to mirror low level runtime functions. We will add new algorithms
to our set that will also fit to the suggested models, will develop timing instru-
mentation for those algorithms to allow studies of performance statistics for our
models, and will run the simulations on larger collections of workstations. In
defining the SRAM and CRAM execution time, it could be useful to see how
balanced their work is. If the execution time in SPELLs is much less than the
data preparation in SRAM or if data transfer time through the network is more
thanscomputationstimerinesSPELLsithen we will need to reconsider our algo-
rithms and communication interface. The results should directly impact both
the hardware and system software designs of the next phase.
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Abstract. Networks of workstations (NOWS) are becoming a cost-effec-
tive alternative for small-scale parallel computing. Usually, NOWs
present an irregular topology as a consequence of the needs in a local
area network. Routing algorithms used in NOWSs are inherently different
from those used in regular networks, mainly due to the irregular con-
nections between switches. In these algorithms, routing is considerably
restricted in order to avoid deadlocks. Recently, a general methodology
for the design of adaptive routing algorithms for irregular networks has
been proposed by the authors. The resulting algorithms increase the
maximum achievable throughput while reducing message latency.

In this paper, we study how much network performance we are losing due
to the irregular topology of NOWSs. We analyze the performance of the
up®/down”™ routing algorithm in a 2D mesh topology and compare it with
the performance achieved by the XY routing scheme in the same network,
in order to answer the following two questions: 1) in a 2D mesh, which of
the two routing algorithms achieves better performance?, and 2) where
does the up* /down™ routing algorithm work better, in a 2D mesh or in an
irregular network?. Simulation results show that the up*/down™ routing
strategy performs better in a regular network than in an irregular one.
On the other hand, the XY routing algorithm considerably outperforms
the up* /down* scheme. However, when the adaptive routing algorithm
proposed by the authors is used, differences in performance are much
smaller. Thus, the higher performance of a regular topology could not
compensate for the loss in wiring flexibility with respect to irregular
networks, or their capability of adding a single switch at any moment.

1 Introduction

Networks of workstations (NOWSs) are being considered as a cost-effective alter-
native for small-scale parallel computing. In order to achieve a high efficiency,
the interconnects used in NOWs must provide high bandwidth and low laten-
cies. Recent proposals for NOW interconnects, like Autonet [7], Myrinet [1], and
ServerNet II [5] are switch-based and use point-to-point links between switch-

ing elements instead of the traditional bus used in computer networks. Usually,
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they present an irregular topology as a consequence of the needs in a local area
network. This irregularity provides wiring flexibility, scalability, and incremental
expansion capability required in this environment.

Several deadlock-free routing algorithms have been proposed for NOWs, like
the up*/down* routing scheme [7] (used in Autonet networks), the adaptive-trail
routing algorithm [6], or the ones proposed for Myrinet [1] and ServerNet II [5].
These algorithms are inherently different from those in regular networks, mainly
due to the irregular connections between switches. In these algorithms, routing is
considerably restricted in order to avoid deadlocks. Recently, a general method-
ology for the design of adaptive routing algorithms for irregular networks has
been proposed [10,8]. The resulting algorithms drastically increase the maximum
achievable throughput while reducing message latency.

The up* /down* routing algorithm is devised to be implemented in networks
with irregular topology. However, because this scheme is based on building a tree
with the switches of the network, the up* /down* algorithm can also be used as
the routing scheme in any regular network, since any regular network contains an
embedded tree. Several routing algorithms have been designed for regular net-
works, like the well-known XY routing scheme, proposed for 2D meshes. Unlike
the up* /down* routing scheme, which provides non-minimal partially adaptive
communication, the XY routing strategy is a minimal deterministic routing al-
gorithm.

Regular topologies usually present better performance than irregular ones.
For this reason, the designers of large NOWSs tend to use the flexibility of their in-
terconnects to choose the regular topology that best fit their purposes - fat trees
for the Berkeley NOW and Illinois FM NT clusters, 2-D meshes for the RWCP
PM and Vrije University DAS clusters, for example. Thus, we could wonder how
much network performance we are losing due to the use of irregular topologies
in NOWs. We can, therefore, compare the performance of the up*/down* rout-
ing algorithm in a regular topology with the performance achieved by a typical
routing algorithm for this kind of topologies. In this paper we perform such a
comparison. We analyze the performance of the up*/down* routing algorithm
in a 2D mesh topology and compare it with the performance achieved by the
XY routing scheme in the same network. Our aim is to answer the following
two questions: 1) in a 2D mesh, which of the two routing algorithms achieves
better performance?, and 2) where does the up*/down* routing algorithm work
better, in a 2D mesh or in an irregular network?. By answering these two ques-
tions we will known how much network performance we waste due to the use of
irregular topologies in NOWs. We will also know if the wiring flexibility and the
incremental expansion capability provided by irregular networks compensate for
their lower performance.

The rest of the paper is organized as follows. In Section 2, networks of work-
stations are briefly introduced. In Section 3, the performance of the up*/down*
routingralgorithmpinyseveraly2Dymeshesyis evaluated and compared with the per-
formance achieved by the XY scheme. Finally, in Section 4 some conclusions are
drawn.
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2 Networks of Workstations

NOWs are usually arranged as a switch-based network with irregular topology.
In these networks each switch is shared by several workstations, which are con-
nected to the switch through some of its ports. The remaining ports are either
left open or connected to ports of other switches to provide connectivity between
the workstations. This connectivity is usually irregular, but guarantees that the
network is connected. Links in a NOW are typically bidirectional full-duplex,
and multiple links between two switches are allowed.

Different switching techniques, like wormhole, virtual cut-through, or ATM,
are suitable for being implemented in NOWs. Recently proposed networks like
Myrinet or ServerNet II use wormhole switching [2].

Routing decisions in irregular networks can be based on source routing or
on distributed routing. In the former, the message header contains the sequence
of ports to be crossed along the path to the destination [1]. In the latter, each
switch has a routing table that stores the output ports that can be taken by the
incoming message. Some network mapping algorithm must be executed in order
to fill the routing tables before routing can be performed. Regardless of where
decisions are taken, a routing algorithm must determine the path to be followed.
Several deadlock-free routing schemes have been proposed for irregular networks
[7,1,5,6,10,3].

2.1 Adaptive Routing

Although up*/down* routing provides some adaptivity, it is not always able to
provide a minimal path between every pair of workstations. On the other hand,
the adaptivity provided by up*/down* routing is very reduced.

Recently, a design methodology for adaptive routing algorithms on irregular
networks has been proposed [10,8]. This methodology starts from a deadlock-
free routing algorithm for a given interconnection network. In a first step, all the
physical channels in the network are split into two virtual channels, called the
original and the new channels. In a second step, the routing function is extended
so that it can use all the virtual channels. New channels are used with the only
restriction that they must bring messages closer to their destination. Original
channels are used in the same way as in the original routing function. When a
message is injected into the network, it can only leave the source switch by using
new channels, since they provide a higher degree of adaptivity and, usually, a
shorter path. When a message arrives at an intermediate switch, it first tries to
reserve a new channel. If all the suitable outgoing new channels are busy, then
an original channel belonging to a minimal path is selected. To ensure that the
new routing function is deadlock-free, if none of the original channels provides
a minimal path, then the original channel that provides the shortest path will
be used as escape path [3]. In case several outgoing original channels belong to
shortestppathsponlygoneyofythempwillybe selected. Once a message reserves an
original channel, it can no longer reserve a new one. This message will be routed
through original channels until it arrives at the destination switch.
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This design methodology can be applied to any deadlock-free routing al-
gorithm. When applying it to the up*/down* algorithm, the resulting routing
scheme can be stated as follows. Newly injected messages can only leave the
source switch using new channels belonging to minimal paths. When a message
arrives at a switch through a new channel, the routing function gives a higher
priority to the new channels belonging to minimal paths. If all of them are busy,
then the up* /down* routing algorithm is used, selecting an original channel be-
longing to a minimal path (if any). To ensure deadlock-freedom, if none of the
original channels supplied provides minimal routing, then the one that provides
the shortest path will be used. Once a message reserves an original channel, it
will be routed using only original channels according to the up*/down* routing
function until it is delivered. We would like to remark that this routing algorithm
provides fully adaptive minimal routing between all pairs of nodes until messages
are forced to move to original channels. When a message starts using original
channels, it provides the same adaptivity as the up*/down* routing algorithm.

Note that this routing algorithm can also be implemented using two parallel
physical channels instead of splitting link into two virtual channels [10]. This
could be easily implemented in networks like Autonet or ServerNet II, which
also use distributed routing.

3 Regular versus Irregular Routing Algorithms

The goal of this paper is to answer the following two questions: 1) in a 2D
mesh, which of the two routing algorithms, up* /down* and XY, achieves better
performance?, and 2) where does the up*/down* routing algorithm work better,
in a 2D mesh or in an irregular network?.

To answer these questions we have simulated a NOW with a 2D mesh topol-
ogy. Thus, it is a network of workstations with regular topology. On this NOW,
we have measured the performance of several routing algorithms. First, we have
considered the up* /down* and the XY routing algorithms. The up* /down* rout-
ing algorithm will we referred to as UD. We have also evaluated the performance
of the routing algorithm proposed in Section 2.1, referred to as MA-2vc. As this
routing algorithm uses two virtual channels per physical channel, we have also
included in this performance evaluation the UD-2vc routing algorithm as well
as the XY-2vc routing scheme. These two algorithms behave as the UD and XY
schemes respectively, but they use two virtual channels. In both cases, the net-
work is not divided into two virtual networks, but a message arriving at a switch
through one of the two incoming virtual channels can be routed through any
of the two output virtual channels belonging to the feasible physical channel.
Finally, we have evaluated another routing algorithm: the XYadapt algorithm.
This routing scheme uses one of the virtual channels for minimal fully adaptive
routingrandythesotheryoneforXeYoroutingy[4]. As seen, it is similar to the MA-2ve
routing algorithm, except that the latter is based on up*/down* routing and the
former on XY routing.
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We assume that each switch has 8 ports. When defining the topology of the
network, we have connected four workstations to each switch. The remaining
switch ports are used to interconnect switches. Note that not all the switches
use all of their ports, since switches on the edges of the mesh are only connected
to three other switches. Also, corner switches have only two neighbors. We have
considered three network sizes in the study: 16 switches (64 workstations), 36
switches (144 workstations), and 64 switches (256 workstations). In the case of
the UD, UD-2vc, and MA-2vc routing algorithms, the root of the tree built to
compute routing tables has been chosen as the switch whose average distance to
the rest of switches is the smallest one. Therefore, the root switch will be the
one placed at the center of the mesh.

The virtual channel flow control protocol used in the networks we have ana-
lyzed is the one proposed in [9] (see that paper for a complete description of the
protocol as well as for an analysis of virtual channels in NOWs). Fly time has
been assumed to be one cycle. Input buffer size has been set to 11 flits, while
output buffer size has been set to 2 flits.

Instead of analytic modeling, flit-level simulation has been used to evalu-
ate the performance of the different algorithms. The evaluation methodology
used is based on the one proposed in [3]. Performance measures are latency and
throughput. Message latency, measured in clock cycles, lasts since the message
is introduced in the network until the last flit is received at the destination
workstation. Traffic is the flit reception rate, measured in flits per switch per
cycle. Throughput is the maximum amount of information delivered per time
unit (maximum traffic accepted by the network).

3.1 Switch Model

Each switch has a routing control unit that selects the output channel for a
message as a function of its destination workstation, the input channel, and
the output channel status. Table look-up routing is used. The routing control
unit can only process one message header at a time. It is assigned to waiting
messages in a demand-slotted round-robin fashion. When a message gets the
routing control unit but it cannot be routed because all the alternative output
channels are busy, it must wait in the input buffer until its next turn. A crossbar
inside the switch allows simultaneous multiple message traversal. It is configured
by the routing control unit each time a successful route is established. In the
switch model, we have assumed that it takes one clock cycle to compute the
routing algorithm. Also, it takes one clock cycle to transmit one flit across the
internal crossbar.

3.2 Message Generation

Message traffic and message length depend on the applications. For each simu-
lationsrunypwerconsideredsthatymessagesgeneration rate is constant and the same
for all the workstations. Once the network has reached a steady state, the flit
generation rate is'equal to the flit reception rate (traffic). We have evaluated the
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full range of traffic, from low load to saturation. On the other hand, we have
considered that message destination is randomly chosen among all the worksta-
tions in the network. We have also considered the bit reversal, perfect shuffle,
and transpose distributions, and also local traffic. For message length, 16-flit
and 256-flit messages were considered, and also a mixture of short and long
messages (80% 16-flit messages, 20% 256-flit messages). Simulations were run,
after a transient period high enough to deliver 60,000 messages, for a number of
cycles sufficient for obtaining steady values of network throughput, or, when the
network is close to saturation, a number of cycles high enough to deliver 200,000
messages.

3.3 Simulation Results

Figure 1(a) shows the average message latency versus traffic for a network com-
posed of 16 switches. Message length is 16 flits. Message destinations are uni-
formly distributed among all the workstations in the network. As expected,
the up*/down* routing algorithm achieves the highest latency and the lowest
throughput. When this routing scheme is implemented using two virtual chan-
nels, latency decreases, and achieved throughput increases. However, network
performance is lower than the one obtained when using the XY scheme, despite
the fact that this latter algorithm does not use virtual channels. This result re-
flects the concentration of traffic near the root of the tree and the great amount
of messages that are routed following non-minimal paths when the UD routing
scheme is used. On the other hand, the performance achieved by the MA-2vc
routing algorithm is quite the same as the one achieved by the XY-2vc scheme.
Latency for the MA-2vc routing scheme is even lower for low and medium net-
work loads. This result means that the MA-2vc scheme routes messages along
minimal paths for low and medium network loads, and also that adaptivity con-
tributes to make latency lower, due to the higher number of routing choices with
respect to the minimal deterministic routing scheme XY-2vc. Note that when
the XYadapt routing scheme is used, latency is decreased, while the maximum
achieved throughput is maintained with respect to the XY-2vc algorithm. This
means that adding adaptivity to a minimal routing algorithm leads to lower mes-
sage latencies, even for high network loads. In the case for long messages, shown
in Figure 1(b), similar results are obtained. Note that in this case a slightly
higher network throughput is achieved because of two reasons: first, large input
buffers are more efficiently used by long messages; second, the cost for routing
a message and propagate its data along the wires is better amortized by long
messages than by short ones.

When network size increases, differences between minimal and non-minimal
routing are more noticeable. Figures 1(c) and (d) show the case for a network
with 36 switches, while Figures 1(e) and (f) plot results for a 64-switch network.
It can be seen that the up*/down* routing algorithm performs even worse as
networkysizegincreasesypdueptopthepusegof non-minimal paths in most cases. It
can also be seen that as network size increases, the MA-2vc algorithm saturates
at lower loads than the XY-2vc, due to the fact that when the network is close
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to saturation, the minimal adaptive virtual channel of the MA-2vc scheme sat-
urates and messages are routed through the original channel, which does not
provide minimal routing in many cases. This leads to a waste of network re-
sources, and therefore, the network saturates prematurely. The XY-2vc scheme
achieves a slightly higher latency than MA-2vc for low and medium network
loads because of the adaptivity of the latter. However, since XY-2vc is a min-
imal routing scheme, it achieves a higher throughput. In addition to provide
minimal routing, the XYadapt algorithm also provides adaptivity. This makes
message latency even lower. However, when the network is practically saturated
the XY-2vc obtains a slightly higher throughput than XYadapt because traffic
with the latter algorithm concentrates in the center of the network [4]. Finally,
note that for large networks, when messages are long, throughput achieved by
XY is higher than the one achieved by MA-2vc. This is due to the waste of
resources caused by the use of the original virtual channel, as mentioned above.
Note that with large networks, differences between the lengths of the paths pro-
vided by minimal and non-minimal routing algorithms are larger.

When locality exists in message destination, we expect a higher network
throughput, because messages block less often. In the case for message desti-
nation randomly chosen within small squares, network throughput is expected
to be higher than for larger squares. Figure 2 shows the case for local traffic
when the square side is 2 and 4 channels. In Figure 2(a) the average message
latency versus traffic for a 16-switch network is shown. Message length is 16
flits. It can be seen that network throughput is more than twice the throughput
achieved with a uniform distribution of destinations. In this case, because of the
short message paths, routing algorithms that use two virtual channels present
lower latency and higher throughput, because channel utilization is higher. Note
that the MA-2vc routing scheme achieves lower throughput than the UD-2vc
algorithm. The reason for this is the higher adaptivity of the UD-2vc scheme at
the source switch. In effect, the MA-2vc routing algorithm considerably reduces
adaptivity at the source switch. This reduction in adaptivity is intended to use
minimal routing. However, for local traffic with square side equal to 2 channels,
paths are very short, and therefore, the benefits of using minimal routing are
less noticeable. This is the reason why the UD-2vc routing algorithm achieves
a throughput similar to that obtained when the XY-2vc scheme is used. In the
case for larger networks (Figure 2(c)), the UD-2vc scheme outperforms the XY-
2vc, due to the higher adaptivity provided by the former. With respect to the
XYadapt scheme, it presents the best behavior because it provides in all the
cases minimal routing at the same time that it is an adaptive routing scheme.

When local traffic spans over a higher distance in the 2D mesh, we obtain
different results. Figures 2(e) and (f) show the average message latency versus
traffic when local traffic is enclosed in 4-link side squares. In this case, as in
the case above, routing algorithms that use two virtual channels achieve higher
throughputsbecausegofraghigherschannelyutilization. However, distances traveled
by messages are longer than in the previous case, and therefore, routing algo-
rithms that provide minimal routing obtain better performance. Moreover, when
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adaptivity is provided besides minimal routing, a higher throughput is achieved.
This is the case for the XYadapt scheme, which obtains the best network per-
formance. The MA-2vc algorithm presents lower message latency and higher
throughput than the XY-2vc scheme because of adaptivity. The XY-2vc algo-
rithm always provides minimal routing, unlike the MA-2vc scheme. However,
this feature of XY-2vc has little benefits with local traffic, while adaptivity is
more important.

We have also compared the performance of XY and UD routing algorithms
when the message destination distribution is other than uniform or local traffic.
In Figure 3 we can see some simulation results for transpose, perfect shuffle, and
bit reversal destination distributions.

The results presented above answer the first question. In a 2D mesh, the XY
routing algorithm behaves much better than the UD scheme. In the case for
the adaptive routing algorithms, the XYadapt scheme achieves a higher perfor-
mance than the MA-2vc scheme. Moreover, in several cases, the XY-2vc scheme
exhibits better performance than MA-2vc. Nevertheless, XY routing improves
with respect to UD by a larger amount than XYadapt does with respect to
MA-2vec.

In order to answer the second question (where does the up*/down* routing
algorithm work better), we have compared the performance of the UD, UD-
2vc, and MA-2vc routing algorithms in both regular and irregular networks.
For the latter networks, topology is completely irregular and has been generated
randomly. However, for the sake of simplicity, we have imposed three restrictions
to the topologies that can be generated. First, we assumed that there are exactly
4 workstations connected to each switch. Also, two neighboring switches are
connected by a single link. Finally, all the switches in the network have the same
size. We assumed 8-port switches, thus leaving 4 ports available to connect to
other switches. In order to make a fair comparison, since switches in a 2D mesh
present less connectivity than in the irregular networks due to the edges of the
mesh, we have removed in the irregular networks the same number of links that
are not present in a 2D mesh of similar size. Thus, for a 16-switch irregular
network, we have removed 16 links, while in the case for a 64-switch irregular
network we have taken away 32 links. Note that the performance of the network
can vary depending on the particular links that are removed. Moreover, removing
some specific links may disconnect the network. Thus, in order to make a fair
comparison at the same time that the network is not split into two networks, we
have removed links starting from the switch with lower ID, and taken away the
same links than are removed in a 2D mesh. If the network is disconnected when
removing one of the links, that link is not removed and the equivalent link in
the switch with the following ID is removed.

Figure 4 shows some of the simulation results. In Figure 4(a) one can see the
average message latency versus traffic for a 16-switch network with both regular
andpirregulargtopologymwhensthesUbyscheme is used with 16-flit messages. This
routing algorithm achieves a noticeable higher performance in a regular network:
latency is lower for the whole range |of traffic and the achieved throughput is
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higher. The reason for this improvement is that paths followed by messages are
shorter in a 2D mesh due to the regularity of the network. Also, removing some
links in the irregular network makes distances longer. When the UD-2vc and
MA-2vc routing algorithms are used (Figures 4(c) and (e)), similar results are
obtained. In the case for the MA-2vc scheme, differences in latency are smaller,
especially for low network loads, because this routing algorithm provides minimal
routing in most cases. In general, for small networks, with a regular topology we
obtain a 20% of improvement in throughput.

We have also considered the case for large networks. Figures 4(b), (d), and (f)
show the average message latency obtained for 64-switch networks. UD, UD-2vc,
and MA-2vc routing algorithms are used, respectively. When the UD and UD-
2vc schemes are implemented, achieved throughput in regular networks is higher.
However, with respect to message latency, it is lower for irregular networks for
low network loads. This is due to the fact that in an irregular network, some
of the paths are very short because the tangle of links provides some short
cuts from one part of the network to another. This effect is more noticeable as
network size increases. However, in a 2D mesh the length of the paths followed
by messages is more uniformly distributed. This causes that in the absence of
contention, messages traveling in an irregular network through these short cuts
are not disturbed by messages traveling along longer paths, and therefore, their
latency is small, reducing the average message latency. This effect is much more
noticeable with the MA-2vc routing scheme, which provides minimal routing in
most cases. Figure 4(f) shows that when using this routing scheme, performance
in a large irregular network is better than in a regular one, especially with respect
to message latency. The reason is that the MA-2vc algorithm takes advantage
of the short cuts present in the irregular network, routing messages efficiently.
However, this routing scheme cannot use any short cut in a regular network
because in such a topology there is no short cut. The minimum average distance
from one switch to the rest of switches is 4.06 hops in a 64-switch regular network.
In an irregular network with same number of switches, this distance is about 3.
Therefore, a routing scheme that provides minimal routing in most cases, like
the MA-2vc, can take advantage of this shorter distance by using short cuts.

Results when message length is 256 flits instead of 16 flits are similar to those
presented above.

4 Conclusions

Networks of workstations are becoming increasingly popular as a cost-effective al-
ternative to parallel computers. Typically, these networks connect workstations
using irregular topologies. Irregularity provides the wiring flexibility, scalabil-
ity, and incremental expansion capability required in this environment. Routing
algorithms used in NOWSs are inherently different from those used in regular
networkspmainlysduestopthesirregularsconnections between switches. In these al-
gorithms, routing is considerably restricted in order to avoid deadlocks. Recently,
we proposed a design methodology as well as fully adaptive routing algorithms
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for irregular topologies. These algorithms increase throughput considerably with
respect to previously existing ones.

Due to the routing algorithms used in NOWs, especially designed to be used
in irregular topologies, network performance could be lower than if a traditional
routing algorithm were used in a NOW based on a regular topology.

In this paper we have analyzed whether the additional flexibility provided by
using irregular topologies is worth the performance degradation due to the use
of more general routing algorithms. In particular, we studied the performance
of the up*/down* routing algorithm in a 2D mesh topology and compared it
with the performance achieved by the XY routing scheme in the same network.
We have also compared the performance of the up*/down* routing algorithm in
both regular and irregular networks.

Results show that the XY routing algorithm considerably outperforms the
up*/down* scheme. However, when a fully adaptive routing algorithm like MA-
2vc is used, differences are much smaller. In other words, performance degrades
by a significantly lower amount when adaptive routing is used. On the other
hand, the up* /down* algorithm performs better in a regular network than in an
irregular one. However, in the case for the MA-2vc algorithm, when the network
is large, it achieves better performance for irregular networks.

In summary, the wiring flexibility provided by using irregular topologies leads
to a significant performance degradation when up* /down* routing is used. How-
ever, performance degradation is significantly smaller when the adaptive algo-
rithm previously proposed by us for irregular networks is used. In some cases,
an irregular network with our adaptive routing algorithm may outperform a
regular one with fully adaptive routing. In general, when our adaptive routing
algorithm for irregular networks is used, the higher performance of a regular
topology could not compensate for the loss in wiring flexibility with respect to
irregular networks, or their capability of adding a single switch at any moment.
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Fig. 1. Average message latency versus traffic. Network size is 16 switches in (a) and
b), 36 switches in (c) and (d), and 64 switches in (e) and (f). Message length is 16
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Fig. 2. Message latency versus local traffic. Destinations are chosen within a square
centered at the source switch with side equal to 2 links in (a), (b), (c), and (d), and
inside a square with side equal to 4 links in (e) and (f). Network size is 16 switches in

and (f). Message length is 16 flits in (a),



60

50

45

40

Latency (cycles)

35

30

42

40

38

36

34

32

Latency (cycles)

30

28

26

42

40

38

34

32

Latency (cycles)

30

28

26

24

Federico Silla and José Duato

36

T T T T T T T T T r T T T
L UD —— | 70 UD" —— q
'UD-2ve’ —— 'UD-2v¢” ——
'MA-2ve’ —s— 65 L'MA-2ve’ =— 4
XY — XY —
L ’XY-2ve! =— i 'XY-2ve' =—
’XYadapt® —— 60 | XYadapt’ —— d
3
S
L 4 &5 4
z
5
2 50 4
—
45 e
L 4 40 b 4
n . . . . . . . . 35 . . . o
005 01 015 02 025 03 035 04 045 05 0.05 0.1 0.15 0.2
Traffic (flits/cycle/switch) Traffic (flits/cycle/switch)
(a) (b)
T T T T T T T T T
L D’ —— J 60 r  UD’ —— 1
'UD-2ve’ —— 'UD-2ve’ ——
'MA-2ve’ —s— "MA-2ve’ -8—]
L XY e 4 S5 XY |
'XY-2vel -— 'XY-2ve? =
"X Yadapt’ 4 [ XYadapt’
@
=2 50 r q
ke
L ] g 45F 1
2
g
-
L b a0 b 4
35 4
. . . . . . n . . . . .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.05 0.1 0.15 0.2 0.25 0.3
Traffic (flits/cycle/switch) Traffic (flits/cycle/switch)
() (d)
T T T T T T T T T T T
UD" —— 550 UDT —— ]
'UD-2ve’ —— 4 'UD-2v¢” ——
'MA-2ve’ —s— 'MA-2ve’ s—
L XY — i XY —
'XY-2vel -— 50 F XY-2ve’ —-— 4
"XYadapt’ —— ’XYadapt’
S
L 1 B ast 4
Zx
L -
2
1
| 1 2 a0t 1
35 1 q
e . . . . . . = . . . .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.05 0.1 0.15 0.2 0.25

Tmfﬁc (ﬂits/cycle/swilchi

()

Traffic (flits/cycle/switch)

(f)

Fig. 3. Average message latency versus traffic for several destination distributions. (a)

and (b)

transpose.

(c) and (d) perfect shuffle. (e)

and (f) bit reversal. Network size is

es in (b), (d), and (f). Message length is



60

55

50

45

Latency (cycles)

40

35

30

60

55

50

45

Latency (cycles)

40

35

30

60

55

50

45

Latency (cycles)

40

35

30

Is It Worth the Flexibility Provided by Irregular Topologies in Networks? 61
L °UD Irregular Network’® —— 4 70 - °UD Irregular Network’ —— q
’UD Regular Network” —— UD Regular Network” ——
L | 65 1
_ 60 1
[ 108
S
B 5 R
[ 1 z
5 50 1
ES
k 1 3
45 J
40 + 1
[ i 35t —
0.05 0.1 0.15 02 0.25 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Traffic (flits/cycle/switch) Traffic (flits/cycle/switch)
(a) (b)
L *UD-2vc Irregular Network’—— 4 70 |->UD-2vc Irregular Network’—— q
’UD-2vc Regular Network’—— *UD-2vc Regular Network’——
L | 65 R
_ 60 1
r 108
S
255 ¢ 4
[ 1 &
5 50 1
ES
k 41 3
45 - R
40 R
[ 1 35+ 1
0.05 0.1 0.15 0.2 0.25 0.3 0.35 002 003 0.04 005 006 0.07 008 009
Traffic (flits/cycle/switch) Traffic (flits/cycle/switch)
() (d)
F"MA-2vc Irregular Network’—— 4 70 PMA-2ve Irregular Network’—— ]
’MA-2vc Regular Network’—+— ’MA-2vc Regular Network’—+—
L ] 65 1
60 1
r 1%
S, 55 f
<
L 1 2 s 1
5
ES
[ 1 = 45 R
L 1 40 1
L ] 35 R
. . . . . 30 & . . . . . . . M
0.1 0.2 0.3 0.4 0.5 0.02 0.04 006 008 0.1 012 0.14 016 0.18 02

Traffic (ﬂits/c)-fcle/swilch)

()

Traffic (flits/cycle/switch)

(f)

Fig. 4. Average message latency versus traffic for both regular and irregular networks.

Network size is 16 switches in (a
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), (c), and (e), and 64 switches in (b), (d), and (f). Mes-
, UD-2vc, and MA-2vc routing algorithms
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Abstract. The Multimedia Router (MMR) architecture is aimed at pro-
viding QoS to multimedia traffic in a local area environment, while re-
taining a compact and simple design. In this paper, we show some pre-
liminary performance evaluation results. The workload was composed of
a mix of synthetic CBR traffic and semi-synthetic VBR traffic. The latter
was obtained from real MPEG-2 video sequences. We show that, with
a simple scheduling algorithm, amenable for single-chip implementation,
the link bandwidth utilization is quite satisfactory, while still providing
acceptable delays to both CBR and VBR traffic.

1 Introduction

The market for multimedia applications continues to expand. Moreover, the
number of systems dedicated to multimedia applications is growing at a fast
rate. This is the case for Web servers, video-on-demand servers, video game
computers, immersive environments, collaborative design environments, etc. All
of them need to transfer great amounts of information, and the number of users
is increasing continuously.

The need for higher communication bandwidth is especially crucial in lo-
cal environments. Virtual meetings, access to medical imaging databases and
games are applications usually executed in local area environ-
equire substantial bandwidth to meet
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interactive and other real-time constraints. Moreover, there are certain kinds of
applications, like 3-D image rendering or video encoding, that need the storage
capacity or the computing power of a set of workstations in order to achieve good
performance, thus increasing the need for higher communication bandwidth [2].

This bandwidth must be provided over a network shared by multiple appli-
cations. Traditional router technology developed for high-speed multiprocessor
interconnection networks or high-performance local area networks (LANSs) are
optimized for low latency for best-effort traffic ([3,1]). These networks are not
designed to permit concurrent guarantees of communication performance for
multiple applications.

On the other hand, ATM provides support for quality of service (QoS), but it
has been optimized for wide area networks (WANs). The only known single-chip
implementation of ATM in a local environment is ATLAS I [9].

The main goal pursued by the Multimedia Router (MMR) project [5] is to
design single-chip routers able to support a large number of multimedia con-
nections while allocating the remaining bandwidth to best-effort traffic. The
MMR should handle this hybrid traffic efficiently, satisfying the QoS require-
ments of multimedia traffic, minimizing the average latency of best-effort traffic,
and maximizing link utilization when the network reaches saturation.

The rest of the paper is organized as follows. We will first introduce the Mul-
timedia Router architecture. A more detailed description as well as the MMR
design trade-offs can be found in [4,5]. Then, we will present some simulation
results, obtained with MPEG-2 video traces. We will next show how some para-
meters affect performance. Finally, we will draw some conclusions and point out
the guidelines of our future research effort.

2 Multimedia Router Architecture

2.1 Application Requirements

The requirements of multimedia traffic are quite different from those arising
in other applications like parallel computing, real-time applications, computer
communication, remote file servers, etc. The main distinguishing features are:

Very long data streams

Wide range of bandwidth requirements

Large number of concurrent connections

Jitter sensitive

— Latency tolerant, especially during connection setup
— Short control messages

In some applications, data streams are not compressed because the compres-
sion/decompression process reduces quality, thus leading to constant bit rate
(CBR) traffic. In other cases, either the applications produce a variable amount
ofydatazporpdatayareycompressedptosreduce bandwidth requirements, thus lead-
ing to variable bit rate (VBR) traffic. Also, multimedia traffic may coexist with
best-effort traffic generated by other applications.
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Fig. 1. Multimedia router (MMR) architecture

2.2 Switching Technique and Router Organization

In the Multimedia Router architecture we use the most suitable switching tech-
nique for each class of traffic. Multimedia traffic is handled by a simple connec-
tion oriented scheme, like pipelined circuit switching (PCS)[7], while best-effort
traffic and control messages are transmitted by using virtual cut-through (VCT).

Each physical channel is split into a large number of virtual channels, each
one supporting one connection concurrently with each other. The organization
of the virtual channel buffers consists of a set of interleaved RAM modules
using a simple interleaving scheme. Small buffers with capacity for a few words
allow the storage of incoming data while control information is being processed.
Figure 1 shows the MMR architecture for 4 physical links, including such a buffer
organization. More details can be found in [4,5].

The MMR uses a credit-based flow control scheme, as in [9], allowing the use
of small virtual channel buffers at the price of a higher control overhead. Thus, it
uses large flow control units or flits (>64 bits), in order to amortize this control
overhead.

The internal switch is a multiplexed crossbar, because of the high number
of virtual channels that have to be supported. This switch has as many ports
as communication links. The main drawback of a multiplexed crossbar is that
arbitration is needed every time an input link switches from a virtual channel to
another. Arbitration in the MMR is hidden during the transmission of another
flit because flits are large enough.

Ingordergtorfullysexploitpswitchpandglink bandwidth while simplifying router
design, the MMR synchronously assigns switch ports and output links to the
requesting virtual channels. Flit transmission is organized as a sequence of flit
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cycles. Although transmission is synchronous inside each router, different routers
work asynchronously.

The routing and arbitration unit executes the routing algorithm. The routing
algorithm determines the path followed by the probes when establishing a con-
nection and by the control and best-effort packets. A deadlock-free fully adaptive
routing algorithm proposed for networks with irregular topology [11,12] will be
used to route packets using VCT switching. Exhaustive profitable backtracking
(EPB) [6] will be used when establishing connections. A connection is established
in PCS by routing a probe from source to destination. This probe contains some
control information, the destination address, and information about bandwidth
requirements. The destination node returns an acknowledgement to the source
node.

2.3 Bandwidth Allocation and Link/Switch Scheduling

The network must provide some mechanisms to guarantee the QoS requirements
of different applications. Admission control coupled with policing mechanisms
during data transmission within the switch and/or network interface enable pro-
vision of certain types of QoS guarantees. Support for QoS guarantees within the
MMR takes the form of solutions to three basic problems: bandwidth allocation,
link scheduling, and switch scheduling.

Link bandwidth and switch port bandwidth are split into flit cycles. Flit cy-
cles are grouped into rounds also referred to as frames. The number of flit cycles
in a round is an integer multiple K (K > 1) of the number of virtual channels
per link. Bandwidth for a connection is allocated as an integer number of flit
cycles. The allocated flit cycles will be assigned to the requesting connection
every round. Thus, a greater value of K provides a higher flexibility for band-
width allocation. However, it may increase jitter because rounds take longer to
complete. Therefore, the selected value for K is a trade-off between flexibility
and jitter.

The data structure used for supporting fast scheduling decisions is a set of
status bit vectors, where each bit in a vector is associated with a single virtual
channel. Bit vectors provide information about different conditions for all the
virtual channels in the router. We consider the following status bit vectors:
flits available, CBR service requested, CBR bandwidth serviced, VBR service
requested, VBR bandwidth serviced. A bit in one of these bit vectors is updated
every time the status of a virtual channel changes.

When a connection is being established in the MMR, the source node gen-
erates a routing probe that carries information about bandwidth requirements.
For CBR connections, each probe must carry information about the requested
bandwidth, measured in flit cycles/round. Each output link requires an asso-
ciated register that keeps track of the total number of flit cycles/round that
have been allocated. This register is incremented by the requested number of
flitreyclesswhensglinksbandwidthsisrallocated and decremented when bandwidth is
deallocated. A CBR connection can only be allocated if the total number of flit
cycles that have been allocated (including the current request) does not exceed
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the number of flit cycles in a round. Note that a certain number of flit cycles
can be reserved for use by all the best-effort packets crossing a particular link in
order to prevent starvation of best-effort traffic.

In order to deal with the varying requirements of different VBR connections,
a probe establishing a VBR connection will carry the permanent (or average)
and peak bandwidth for that connection. In order to support bandwidth allo-
cation for VBR connections, each output link requires two associated registers.
The first one keeps track of the total number of flit cycles/round that have been
allocated. This is the same register mentioned above for CBR connections. The
second one stores the total peak bandwidth requested by the connections using
that link, and it is updated only when allocating/deallocating VBR, connections.
These registers are incremented by the permanent and peak bandwidth, respec-
tively, when a connection is established and decremented by those values when
a connection is removed. A VBR connection will only be accepted if the value of
the first register (total number of flit cycles/round that have been allocated) plus
the permanent bandwidth of the current connection do not exceed the number
of flit cycles in a round, and the value of the second register (total peak band-
width of the connections through that link, including the current request) does
not exceed the number of flit cycles in a round times a concurrency factor. This
concurrency factor is stored in a separate register and is set during power on.
A higher concurrency factor means that link bandwidth will be shared by more
VBR connections, thus decreasing QoS guarantees.

The link scheduling algorithm operates on a round basis. It keeps track of
the number of flit cycles assigned to each virtual channel during each round.
This algorithm ensures that no virtual channel consumes more bandwidth than
allocated. At each router, the link scheduler will assign flit cycles to the flits that
arrive during each round, giving priority to CBR connections, and then to VBR
connections. Link scheduling is performed for each flit cycle. On each input port
the link scheduler provides one or more virtual channels among those ready to
transmit a flit during the next flit cycle. Switch scheduling refers to the process
of determining which input ports are connected to which output ports in a flit
cycle. Switch scheduling must be performed in conjunction with link scheduling.

In order to maximize the probability of successfully assigning an output port
in a flit cycle, instead of computing a single candidate for each group of virtual
channels at an input port, the link scheduler computes a set of candidates. By
doing so, if a given virtual channel cannot be serviced due to conflicts, it may
happen that another virtual channel in the set of candidates can be serviced.

The router uses an input-driven scheme. The set of candidates for each input
link is simply obtained as the result of some operations with bit vectors (for
instance, the set of input virtual channels at that link with flits available and
CBR service requested and not completely serviced). In this paper, we have
used a round-robin selection among the candidates for arbitration. First, an
inputyphysicalplinksispselectedspAmvirtual channel is then selected from the set
of candidates in this physical link using the link scheduling algorithm and the
requested output link is assigned to|it. Then, the next input physical link is
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selected. From the set of candidates for this physical link the router eliminates
the virtual channels connected to the already assigned output link. A virtual
channel is then selected from the set of candidates in this physical link, and so
on. A more effective link /switch scheduling strategy has been recently proposed
by us for CBR traffic [5]. This strategy is not available yet in our simulator for
VBR traffic, but we plan to support it in the near future.

The scheduling algorithm is completely executed every round, servicing all
the active connections. For each round, the scheduling algorithm is invoked every
flit cycle. During each flit cycle, physical output links and switch input ports
are synchronously assigned to a non-conflicting set of virtual channels for the
transmission of a single flit from each virtual channel. Concurrently with this
transmission, the scheduling algorithm computes the set of virtual channels that
will transmit a flit during the next flit cycle. Then, the router waits until the
current flit transmission finishes. The switch is then reconfigured according to
the computed output link assignment, the next flit cycle starts, and the switch
scheduling algorithm is invoked again, and so on until the round is completed.

3 Simulation Results

3.1 Simulation Conditions and Workload

We have run several simulations in order to assess the performance achieved by
our router design. Simulation is event-driven, and the tool is written in C++.
Link and switch scheduling are carried out as described in section 2.3. We have
simulated a 4 x 4 router with 256 virtual channels per physical link. Physical
links are 16 bits wide. Link bandwidth is 1.24 Gbps, thus the router cycle is
12.9 nanoseconds. Buffer size is not limited. This is similar to the use of flow
control. When using flow control, flits are stored in the buffers of the routers the
flow traverses, thus there is no practical limit to the size of the buffers. This is
conceptually the same as having unlimited buffer space in a single router. All
the tests have been simulated for 200 scheduler rounds.

For the first set of simulations, the K parameter is set to 16, thus the round
has 4096 flit cycles. Flit size is 1024 bits, leading us to a flit cycle of 12.9 x
65 = 838.5 nanoseconds. This is the time available to the router to compute the
scheduling for the next flit cycle.

The workload is composed of a mix of CBR and VBR traffic. Simulations do
not include best-effort traffic nor control messages yet. CBR traffic is synthetic,
and is composed of connections randomly chosen from the following set of average
bandwidth requirements: {64 Kbps, 1.54 Mbps, 55 Mbps}. VBR traffic is semi-
synthetic. We model it with a pattern similar to the train packets in [8], but
with timing parameters obtained from MPEG-2 video traffic.

MPEG-2 video coding standard [13] encodes the video streams as a sequence
ofrdifferentyframestypesyplpPpandsByordered with a prefixed and repetitive pat-
tern, called GOP (Group Of Pictures). The GOP we use is
IBBPBBPBBPBBPBB. I frames encode an independent frame, that is, I frames
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do not need any other information but themselves to be decoded. P frames need
the last I frame in the sequence to be decoded, because the data they hold is
related to that on the I frame. Finally, B frames need information from both pre-
vious and following P or I frames to be decoded. The bandwidth needed for each
type of frame is different. I frames are the most bandwidth consuming, because
they carry more information, and B frames are the least bandwidth consuming.
In Figure 2 we show the traffic pattern for a typical MPEG-2 video sequence.

o Flower Garden Sequence, Q=8

30

25

Mbits/s

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (miliseconds)

Fig. 2. Example of VBR MPEG-2 video sequence

We model the MPEG-2 video flows by sending a frame every 33 milliseconds,
which corresponds to a transmission rate of 30 frames/sec. The frame sizes are
obtained from trace files, corresponding to real MPEG-2 video sequences. The
flits in a frame are sent uniformly within those 33 msecs. We chose the VBR con-
nections randomly among the ones whose characteristics are shown in Table 1.
We considered a concurrency factor of 16, so that it does not posses any restric-
tion other than the availability of enough output link bandwidth for the average
bandwidth on the admission of VBR, connections. The effect of this factor will
be studied in future works.

We generated connection requests randomly, for several workload levels.
When simulation starts, the connection admission control may reject some of
them, if there is not enough output link bandwidth to serve them. The remain-
ing connections are kept active during all the simulation. It should be noted
that the percentage of bandwidth filled with connections may be bigger than
the one we request, because we perform surplus round-off, that is, we keep on
requesting connections until the filled bandwidth is greater than the requested
onenyBesidespwertakepintopaccountytheraverage bandwidth for VBR connections,
thus, the effective bandwidth they consume may be bigger than that. Finally,
when a connection is requested, the simulator adds the bandwidth consumed by
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Table 1. MPEG-2 video sequence statistics

| Image Size (bits)
Video Sequences|| Max. | Min. [Average

Ayersroc 535030148755 232976
Hook 454560(159622| 272738
Martin 444588(116094| 199880

Flower Garden {|900139|308411| 497126
Mobile Calendar||970205|412845| 600742
Table Tennis 933043(260002| 440547
Football 5905632|340246| 441459

the overhead caused by control information (selection of virtual channel, flow
control...) when deciding whether the connection can be admitted. For exam-
ple, a CBR connection with a requested average bandwidth of 1.54 Mbps will
consume in fact 1.56 Mbps, if flits are 1024 bits long, and 1.73 Mbps if flits are
128 bits long.

3.2 Performance Evaluation

Figure 3 shows the average crossbar utilization for different percentages of VBR
connections. Each curve presents the utilization for 20%, 50% and 80% of the
requested bandwidth consumed by VBR traffic, respectively. That is, in each
curve, the specified percentage of the workload is filled with VBR traffic. The
figure shows that the router reaches saturation for utilizations of (approximately)
77%, 80% and 88% , respectively. The reason for that is that VBR, connections
have bandwidth peaks and, as we use infinite buffers, the flits belonging to a
burst will be stored until they can be served. We never discard those flits. So,
even in the periods between I frames, where bandwidth requirements are lower,
there will be flits in the buffers waiting for being transmitted. As a consequence
of this, the performance in terms of jitter and delay may be damaged. This issue
will be analyzed later. It should also be noted that the buffers that grow in size
always corresponds to virtual channels carrying VBR traffic. This means that
CBR traffic always gets its reserved bandwidth serviced, in spite of the presence
of VBR traffic.

For the following simulations, we have used a workload where 50% of the
requested bandwidth is consumed by VBR connections. We can see in Figure 4
the effect of the size of the round (parameter K) on the average crossbar utiliza-
tion. Recall that bandwidth allocation is always expressed as a number of flit
cycles/round, and that a round has a number of flit cycles equal to an integer
parameter K times the number of virtual channels per link. The whole round
isrequivalentytorthestotalglinksbandwidthy and by allocating pieces of it (the flit
cycles) to the different connections, we reserve part of the link bandwidth for
those connections.
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Average crossbar utilization for different % of VBR traffic
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Fig. 3. Average crossbar utilization for different percentages of VBR traffic

The saturation point for K = 16 and K = 4 is reached around 81% of of-
fered load. For K = 64, the utilization still grows a bit more before the switch
saturates. We should note here that the offered load for K = 64 is a bit lower
than the other ones when entering saturation because of our workload generation
scheme and the smaller granularity achieved with such a big round. Our work-
load generator keeps on issuing connection requests until the total permanent
bandwidth requested by them is greater than a certain percentage of the link
bandwidth. That is, we make a surplus round-off when generating connections.
The excess bandwidth will be smaller with this big round, because granularity
is also smaller.

Figure 5 shows the percentage of accepted connections for the three values of
K that have been considered. For K = 4 (i.e., coarse granularity) there are more
rejected connections when increasing workload. This is because, as the band-
width is coarsely allocated, it is more difficult to fit bandwidth requirements
with bandwidth reservation. Thus, more connections are rejected. When we in-
crease the value of K, there are less rejections because the bandwidth is more
accurately allocated.

Figure 6 shows the effect of the flit size in the average crossbar utilization. We
have factored out the overhead caused by control information. We can see that
for low workloads, we are able to achieve comparable data utilization for both
small and big flits. For higher workload levels, utilization for small flits hardly
grows: the router reaches saturation with a data utilization of approximately
70%. But with larger flits we are still able to exploit almost a 10% more of the
link bandw1dth reaching almost 80% of utilization. Thus, we can conclude that

nsider efficient link utilization, because
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uently, there is more link bandwidth



Performance Evaluation of the Multimedia Router

Average crossbar utilization for different values of K
T T T

T T
95 B
85 | B
g
g
N ]
g
65 - B
a’
55 - K=4 - -
K=16 —+--
K=64 -8~
. . . . |
55 65 85 95

75
Offered load (%)

Fig. 4. Effect of the K parameter on crossbar utilization

Percentage of accepted connections
T T T T T

~ 100 [ R
g
g
£
E
8
=
£
g
g
< 95 | |

85 95

75
Offered load (%)

Fig. 5. Effect of the K parameter on the percentage of accepted connections

il LN ZJI—F.L'

71



72 Blanca Caminero et al.

Average crossbar DATA utilization for different flit sizes
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Fig. 6. Effect of flit size on crossbar utilization by data

We have shown that our simple scheduling algorithm is able to reach high
crossbar utilizations. But, in order to be able to provide QoS guarantees, we
need to know how that workload is delivered.

We have measured the contribution of each router to the global delay ex-
perienced by the flits. For every flit, the time elapsed since it is stored at the
corresponding input buffer until it leaves the router through the corresponding
output link has been recorded. We have obtained the maximum and average
delay, and its standard deviation. The results for three levels of workload are
presented in Table 2. They have been obtained for K = 16, flits of 1024 bits and
with the 50% of the workload composed of VBR traffic.

We can see that the delay experienced by CBR flits does not grow signifi-
cantly when increasing workload. This is because CBR traffic is given the highest
priority when competing for resources. On the other hand, VBR traffic suffers
extremely high delays for workloads around 80%. Thus, we can conclude that,
although our router is able to reach such high utilizations, the delays obtained
by VBR flits are unbearable. Those utilization levels should not be achieved if
we want to offer QoS to VBR traffic.

Regarding the values for standard deviation, we can see that they remain
stable, except for VBR traffic and high workloads. This means that the delays
experienced by the flits are rather predictable. Moreover, this suggests that the
performance in terms of jitter may be good. This will be studied later.

In order to check how delays are distributed, we have set six delay thresholds
(TH1 to TH6), and have recorded the number of flits whose delays are greater
than each of those thresholds. TH1 is 10 times the time the crossbar needs to
forward a flit, Wthh is 65 router cycles (838.5 nanosecs) in our simulations. TH2
s0 on. Thus, TH6 is 32 times that value
s are presented in Table 3 for CBR flits,
en as percentages of the total number
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Table 2. Flit delay statistics

| [Load (%)[[Max. Delay[Ave. Delay| Std. Dev. |

Total| 59.98 29358 196.38 288.00
70.20 200073 341.28 288.00
81.13 26915769 | 283939.69 [1074500784.00

CBR| 59.98 3299 127.50 288.00
70.20 1913 135.26 288.00
81.13 2969 148.99 289.00

VBR| 59.98 29358 253.76 288.00
70.20 200073 516.50 288.00
81.13 26915769 | 521313.74 |1074500784.00

of transmitted flits. We can see that almost all the CBR flits experienced delays
lower than the first threshold (8.385 microsecs), for both workloads considered.
For VBR traffic and 70% load, we can see that almost all the flits suffer delays
lower than the sixth threshold (268.32 microsecs). For lower loads most of the
flits meet stricter deadlines, as the one imposed by TH5 (134.16 microsecs).
The maximum delay for VBR flits is 200073 router cycles, that is, around 2.6
milliseconds (see Table 2). These results are rather encouraging, because a typical
deadline for MPEG-2 video transmission is 1 second between endpoints. This is
the value for the CTD (Cell Transfer Delay) recommended by the ATM Forum
for video distribution services, using MPEG-2 [10].

Table 3. Flit delay distribution for CBR traffic

|Load (%)[[TH1| TH2 | TH3 [TH4|TH5[THG6|

59.98 0.034/0.00056|0.00011| 0 01| 0
70.20 0.063|0.00075| 0 0 0] 0

Table 4. Flit delay distribution for VBR traffic

|Load (%)|| TH1|[TH2|TH3|TH4] TH5 | THG6 |

59.98 6.35 (1.17]0.29{0.11(0.045|0.004
70.20 19.50(6.81{2.09|0.64| 0.20 0.075

ForpViPEG=2gvideospthepunitpofpinformation for the applications, from the
point of view of the receiver, is the frame. Thus, we have obtained several mea-
sures related to the performance of the router with frames. The delay of a frame
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is the time elapsed since the first flit of the frame is stored at the corresponding
input buffer of the router, until the last flit of the frame is delivered through
an output link. Note that we send all the flits that compose a frame uniformly
within the 33 milliseconds of separation between adjacent frames, so every frame
will take at least 33 milliseconds in traversing the router. This fixed time is rep-
resented in Figure 7 with the straight line. We can see in that figure that the
delay introduced by the router is quite small, because for the highest load we
tested (75 %) this additional delay is under 200 microseconds.

Average frame delay
T

T T

3325 - 1

L

3275 | b

Time (milliseconds)
w
b+
T
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55 60 70 75

65
Offered load (%)

Fig. 7. Average MPEG-2 frame delay

We have also measured the jitter that the frames suffer when traversing the
router. In MPEG-2 video transmission, every frame should arrive to its desti-
nation 33 milliseconds after the previous frame in the sequence, in order to be
displayed properly. Thus, we define the frame jitter as the deviation from this
33 milliseconds of required separation. Results are shown in Figure 8. We can
see that for loads lower than 70 % the jitter remains low, under 1 microsecond.
For higher loads, the jitter increases quite a lot, but it remains under 3.5 mi-
croseconds. These are quite encouraging results, because the jitter allowed in
MPEG-2 video transmission is around several milliseconds, that is, jitter must
be low enough so that a person can see the video sequence smoothly, at a regu-
lar rate. Further studies are needed in order to check the distribution of frame
delays and jitter.

4 Conclusions and Future Research

7 expanding nowadays. We have intro-
in order to cope with the requirements
al data communications.
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Average frame jitter
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Fig. 8. Average MPEG-2 frame jitter

In this paper, we present some performance evaluation results, related to
bandwidth utilization. We also show some preliminary results regarding the de-
lays experienced by flits traversing our router, as well as the jitter introduced.
We fed the switch simulator with a set of CBR and VBR connection requests. In
order to make realistic tests, we used traces obtained form real MPEG-2 video
sequences as VBR traffic.

These results show that our simple design can provide satisfactory bandwidth
guarantees to CBR and VBR traffic. Crossbar utilization is good even for high
loads. CBR traffic performance is not influenced by the presence of VBR traffic,
since its flits are always serviced before the flits corresponding to VBR traffic.
VBR traffic can meet strict deadlines at workloads of around 70% the capacity
of the link. Frame delay and jitter are also acceptable for the same levels of
workload.

Our future research will first test with more detail the performance of our
design in terms of jitter guarantees. Also, some more design parameters have
to be tested and tuned, such as the effect of the concurrency factor and other
scheduling algorithms. Then, we plan to add support for best-effort traffic and
control messages. Later on, an analysis of flow control mechanisms has to be
carried out. Finally, we would like to analyze the coupling between the admission
control algorithm and the link/switch scheduling algorithm in order to improve
QoS guarantees and reduce the percentage of missed deadlines.
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Abstract. The evolution of the Fast Messages (FM) communication li-
brary has shown the importance of flow control to deliver the raw hard-
ware performance of currently available interconnection networks to the
applications. However, the credit-based solution used in FM to provide
flow control, though simple and efficient for systems of limited dimension,
does not scale well when the dimension of the parallel system increases.
In this paper, we propose an extension to the FM flow control algorithm
where credits can be assigned on-demand to communicating nodes. The
experimental results reported in the paper demonstrate that the perfor-
mance of this new scheme is virtually insensitive to system dimension
providing that messages are long enough and there are not communica-
tion hot spots in the system. In presence of more general communication
patterns, the proposed dynamic credit assignment mechanism can be
used to implement adaptive credit allocation policies.

1 Introduction

The availability of new technologies for high speed Local Area Networks (LANs)
offers comparable latency and bandwidth to the proprietary interconnect tra-
ditionally found in massively parallel processors. This has made increasingly
attractive building large parallel systems from commodity components like work-
stations and PCs. However new hardware technologies are not sufficient to solve
the communication problem for these systems. The development of high perfor-
mance communication libraries capable to deliver the raw network performance
to the applications has been recognized as a key factor for the success of cluster
architectures.

A number of research projects have been started to study the design of high
performance communication software for high speed, low latency networks: Ac-
tive Messages (AM) [2], Fast Messages (FM) [10,11], U-Net [3], VMMC-2 [1],
BIP [12]. A distinguishing aspect of the FM project is an accurate choice of
the services to be provided at the library interface. Relying on the favorable
characteristicspofsthepinterconnectiommetwork used in the project, the Myrinet
LAN [ |, FM designers decided to provide services like reliable and in-order de-
livery. Since Myrinet is characterized by very low error rate, absence of buffering
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in the network fabric, and link-level flow control, providing these services essen-
tially requires the introduction of a flow control scheme to prevent the overflow of
internal buffers. These design choices proved to be successful in transferring the
very high performance available at the FM interface to the applications through
a higher-level communication library such as MPI [9].

These results indicate that, for reliable networks, a fundamental component
of a high performance communication library is the flow control algorithm. To
attain its performance levels FM uses a very simple credit-based protocol where
credits correspond to free buffer space. Senders are allowed to transmit packets
as long as they have enough credits for the target node. Credits are refilled by
receivers when they drop under a given threshold. The protocol, called in the
following Static Credit Protocol (SCP), is equivalent to the Credit Update Proto-
col (CUP) proposed in [8] for ATM networks. In both protocols the buffer space
available at the receiver is statically partitioned at initialization time among all
potential senders. This means that senders have less credits and must process
refill packets more often, as long as the number of nodes in the system grows
up. The corresponding bandwidth decrease limits the scalability.

In this paper, we propose an extension to the credit-based flow control al-
gorithm used by FM allowing the number of credits of a given sender to be
temporarily increased on-demand. The performance of this new protocol, called
Credit On-Demand (COD), is virtually insensitive to system dimension, provid-
ing that two constraints are satisfied. Messages are required to be long enough
to observe remarkable improvements in bandwidth and there must not be com-
munication hot spots in the system. The first condition is really not a constraint
since short messages cannot reach peak bandwidth anyway. As to the second con-
dition, message-passing algorithms are usually designed to minimize conflicts at
network interfaces, which means that a wide class of algorithms can benefit of
the on-demand flow control scheme. For more general communication patterns,
the proposed protocol represents a very flexible basic mechanism on top of which
adaptive credit allocation policies [8] can be implemented.

The Credit On-Demand protocol guarantees reliable and in-order delivery of

messages and introduces a negligible overhead, achieving the same peak band-
width of SCP.

We will present here in detail a simplified version of COD that requires the
knowledge of the message length when message transmission is started. A more
general version of the protocol that releases this constraint has been developed,
but it will be only sketched here for space reasons. A detailed discussion of this
version can be found in [5].

The rest of the paper is organized as follows. In section 2 we informally
describe the flow control algorithm used in the FM library, and discuss its scala-
bility with respect to experimental data. In section 3 we present our on-demand
algorithm and prove its correctness. In section 4 we present experimental data
confirmingptheseffectivenessyofsthesproposed approach and pointing out its prac-
tical limitations. In section 5 we report about related work, and in section 6 we
conclude the paper.
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2 Credit-Based Flow Control in FM

According to the Fast Messages programming model [10], the parallel system
consists of n nodes each running at most P independent processes (conterts in
FM terminology). Messages can be sent to any process and they have an asso-
ciated handler function, which is invoked on message reception as in the Ac-
tive Messages model [2]. Message reception is performed through the extract
primitive which implements a flexible polling mechanism. Messages are sent and
received as streams of bytes and primitives are provided for the piecewise ma-
nipulation of data, both on the send and on the receive side. Hence, messages
can be gathered and scattered on-the-fly so that their size and content can be
decided dynamically during message transmission. More details on the library
interface can be found in [10].

Internally the library segments messages into packets of fixed size L,. The
sender host injects the packets into the network copying them through the I/0
bus. Since programmed I/0 is used, the packets are copied directly from user
memory to an adapter’s memory region managed as a circular queue. At the
receiver side, incoming packets are extracted from the network into another cir-
cular queue allocated into the adapter’s memory and then DMAed to a properly
allocated region into the host kernel memory. The latter region is also managed
as a circular queue.

Since FM guarantees message delivery, a flow control scheme must be imple-
mented in order to avoid queues’ overflow.

Both queues in the adapter’s memory at the sender and receiver sides are pro-
tected by overrun simply blocking the queueing of new packets when the queues
are full. Conversely, a credit-based algorithm is used between communicating
nodes to manage the queue allocated into the receiver’s kernel memory.

Let D be the size of this region and N = |D/L,| the number of packets it
can contain. The N available packet slots correspond to as many credits that
are equally divided among all potential senders (which are n - P since a process
can send to itself). A sender is allowed to send packets to a given node only if it
has enough credits corresponding to that node. When packets are extracted by
the kernel area, the receiver check how many credits still has the sender. When
a given low water mark is reached, it sends back to the sender a special refill
packet with the freed credits. The low water mark lwm is set for all senders to
a fraction of the initial credits, so that on one hand refill packets are not sent
too often, and on the other hand the communication pipeline is not interrupted
for lack of credits at the sender side. Senders use piggybacking instead of special
refill packets to refill freed credits to their targets.

Since the queue allocated into the kernel region is the target of DMA op-
erations, it has to be pinned down at the initialization time by the operating
system. Hence, the dimension of this area cannot grow indefinitely and in some
cases the operating system limits its size to a few hundreds kilobytes. The total
amountyoficreditspavailablerforpalissenders is then upper bound and it decreases
as L, increases. Correspondingly, as the number of nodes and the number of
contexts per node increase, the credits initially assigned to each sender decrease,



80 Roberto Canonico et al.

40

512 bytes ——
1024 bytes -+
R . 2048 bytes = -

35

30

25

BWD [MB/s]

20

15

10 I I
1 10 100 1000
# nodes

Fig.1. Bandwidth vs. number of nodes for different packet sizes (messages are
64 Kbytes long).

which means that credits must be refilled more often. This implies that actual
bandwidth decreases as L, n, and P increase.

We carried on a set of measurements that confirms this expected behavior.
For the experiments reported here and in section 4, we used a setup consisting
of Sun Ultra 1 workstations connected by Myrinet and running FM 2.0 under
Solaris 2.5. The DMA region allocated by the operating system to buffer incom-
ing packets has a size of 384 Kbytes. The measured peak bandwidth By ranges
between 36 to 37 MB/s for packet sizes between 512 and 2048 bytes. We simulate
the scaling of the system dimension by using a modified version of FM allowing
the assignment of an arbitrary number of credits to every node.

In figure 1 the measured bandwidth for packets of 512, 1024 and 2048 bytes is
shown when the number of nodes n increase. For all packet sizes, the bandwidth
decreases linearly until a given value of n is reached. For larger values of n the
slope of the curve increases and measured bandwidth gets worse rapidly.

For instance, when packets are 1024 bytes long, the decrease is moderate and
linear up to 40 nodes (assuming one context per node). At this point lwm = 4.
Since the time needed to send 4 packets is comparable with the round trip time,
a sender transmitting many packets in a row can receive the refill packet after
running out of credits. This means that the sender blocks waiting for fresh credits
and this explains the steep decrease in bandwidth.

These results confirm that the credit-based flow control algorithm of FM does
not scale well with the number of nodes in the system. Up to a given system
size this is due to the higher rate at which refill packets must be sent, for larger

stems this is due he iting times before receiving refill packets.
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3 On-Demand Credit Management

In this section we present an on-demand flow control algorithm, called Credit
On-Demand (COD), that improves the performance of SCP, the algorithm orig-
inally used by FM. All algorithms discussed will be presented giving a list of
the variables used by the generic process 7 and the pseudo-code executed when
1 transmits or receives a packet. Each code segment is assumed to be executed
atomically. We assume also that after initialization all processes synchronize so
that all variables are guaranteed to assume consistent values. Correctness will be
proved giving an invariant that captures the basic properties of the algorithm,
and showing that such an invariant holds at any time, before and after execution
of code segments.

Since COD is based on SCP, we present first the latter algorithm and briefly
discuss its correctness.

The SCP algorithm used by the FM implementation on Myrinet is presented
in figure 2. Note that the initial value of all variables is independent of the array
index. Note also that when a packet is transmitted only variables concerning
the receiver process r are accessed. Similarly, when a packet is received only the
variables of the sending process s are accessed. This is a general property of all
algorithms presented in this section and from now onward we will omit the array
index in pseudo-code.

Since the algorithm of figure 2 is quite standard, we only point out a few
aspects that can help the presentation of the on-demand algorithm.

First we note that flow control for refill packets is managed in a special way.
One special credit is reserved for these kind of packets at initialization time (see
initialization of Np) and then refill packets are sent when needed without further
checking. It can be easily proved that there is always space for a refill packet in
the kernel memory, providing that the inequality Ny > 2 [wm holds at any time.
Since this condition is assumed to be satisfied in all the algorithms presented in
this paper, we will not discuss the matter any further.

Second, the precondition to packet transmission means that if there are no
more credits (nsend[rr] = 0), the sender process s loops extracting packets until
a credit refill is received from r and the precondition is restored. Note that the
process cannot loop indefinitely, since r send a refill packet every Ny — lwm
received packets at least.

Third, the correctness of the algorithm requires that all the variables assume
always non-negative values and, for each possible pair of processes (s,r), holds
the invariant:

() gl +nl0o +nl) = n,ls] (1)

where the parenthesized upperscripts denote to which process the referred vari-

able belongs, the symbol ”S«Z;z)l , denotes the number of credits that r has possibly

refilled to s, but s has not yet received, and the symbol nSeQU ok denotes the
numberpofypacketspsentybysprocesspssgbut not received yet by process r. Rela-
tion (1) means that the overall number of packets that s is allowed to send to

r plus those in transit between s and r (including packets already DMAed in
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variable initial

(at process 1) value description

No [|D/Lp]/(n P)] — 1|#credits initially assigned to any sender

Nsend[r] No #credits available to 7 to send packets to r

Nreev|S] No #credits available to s to send packets to %

Nfreed|s] 0 #credits consumed by s and already freed

by 14
lwm [No/2] —1 low water mark
packet transmission to process r: % PRE: nsendlr] > 1

nsend[r] = nsend[r] -1

if nfrecalr] > 0 then % there is freed buffer space
piggyback to the packet nyfrecq[r] credits
Nrecv [7'] = Nrecv [7'] + nfreed[r] % update available credits
nfreed[r] =0

endif

packet reception from process s:
if packet contains a credit refill then
Nsend|8] 1= Nsendls] + credits refilled

endif
if not a refill packet then
Nrecv [5] = Nrecv [5] -1
nfTEEd[S] = nfreed[s] +1
if Nrecy[s] = lwm then % credits must be refilled
send a refill packet with nyyceq[s] credits
Nrecv [5] = Nrecv [5] + nfreed[s] % restore the window size
nfreed[s] =0
endif
endif

Fig. 2. Variables, events and pseudo-code of the FM flow control algorithm
executed by a generic process ¢ in the system.

the kernel memory of r, but not extracted yet) must be equal to the number of
available slots in the kernel memory of r.

The code reported in figure 2 guarantees that the invariant holds at any time.
The formal proof is trivial and we omit it for the sake of brevity.

We are now ready to present the on-demand flow control algorithm. The
general idea is to have a buffer space in the kernel region which is not statically
assigned to a process, but it can be used on-demand to temporarily increment
the credits assigned to a particular sender. Increasing the credits solves both
problems described in section 2, making peak bandwidth essentially independent
i . More specifically, credits should be
ter mark can be placed at a value that
putgoing from the source node, and on
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the other, the value of p, i.e. the number of packets transmitted between two
consecutive refills, is high enough not to cause a bandwidth decrease.

Since just one or at most a few processes at a time can have their credits
increased, we need a mechanism to both acquire and release credits dynamically.

The start and the end of a message transmission are the natural boundaries
at which credits can be effectively acquired and released. Besides simplicity, the
main advantage of this choice is that virtually all senders can use a larger number
of credits, providing that communication schedules minimizing conflicts at the
network interfaces are adopted. Since parallel algorithms are usually designed
assuming for the parallel system a fully connected model [6], this requirement
turns out to be satisfied in many cases. In particular this is true in typical
collective communication patterns where processes exchange large data sets [7],
and more generally in scientific applications. However, this approach presents
two main drawbacks. The first one is that messages have to be long enough to
take advantage of the credit increment. In section 4, we will show that this issue
is not critical by giving a quantitative evaluation of the impact of message length
over performance. The second drawback is that this simple, per message policy
cannot guarantee a fair credit assignment among senders in presence of general
communication patterns. In section 5, we will discuss the matter further.

In designing a per message on-demand credit-based algorithm for the Fast
Messages library, however, a problem arises. Since messages can be gathered
on-the-fly, their length may not be known in advance and only when the trans-
mission ends both sender and receiver know that the additional credits acquired
when transmission started must be released. This makes difficult for the sender to
discard all the additional credits acquired without introducing additional control
messages. We therefore designed a simplified version of the on-demand algorithm
assuming that the first packet of any message contains the exact length in packets
of the message itself. We also designed a more general version of the algorithm
that releases this assumption. For space reasons we give here only some hints on
the latter version. Interested readers may find a complete discussion in [5].

In figures 3 and 4 is presented the first variant of the algorithm. The variables
that remain unchanged with respect to the original FM flow control algorithm
are not shown in the table. Note that the array indexes s and r have been omitted
in the pseudo-code and in the related discussion.

Constant values Nyp; and lwmy: have to be determined experimentally and
are not shown in the table. The values used in our experiments will be given
in the next section. The proper initial value to be given to Ny and Ng,44 are
not independent and depend on many factors. They must be determined so that
nP (No + 1) + Navail = I_D/LpJ

The basic idea of the algorithm is that the receiver gives additional credits
to the sender when the first packet of a long enough message is received. The
criteria to decide which is the threshold length, how many additional credits
havertorberassignedspandyifytheglowpwater; mark has to be risen depend on many
parameters and they will not be discussed here. Possible choices that lead to
good results in practical cases are suggested in the pseudo-code.
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variable initial
(at process 7)| value |description

No see text |#credits initially assigned to any sender

Nopt see text |minimum additional #credits that guaran-
tees peak bandwidth (constant)

Naaals] 0 additional #credits temporarily assigned to
s

Navail see text |#credits not assigned to any process

lwmopt see text |minimum value of low water mark that does

not introduce holes into the communication
flow (constant)

lwm|s] | No/2] — 1|low water mark currently assigned to s
len|[s] 0 length (#packets, included header and tail)
of FM message that is being received

packet transmission to process r: % PRE: nsendlr] > 1
Nsend ‘= Msend — 1
if nfreea > 0 then % there is freed buffer space
if len = 0V len > Nyqq then % on-demand credit scheme
piggyback to the packet nyfrecq[s] credits % not used or all available
Nrecv = Nrecv + Nfreed % credits must be refilled
Nfreed ‘= 0
else % partial refill

piggyback to the packet min(nfreed, len — max(0, nreco — No)) credits
Nrecv ‘= Nrecv T min(”freed, len — ma,x(O, Nrecv — NO))
Nfreed := Nfreed — min(”freed, len — ma,x(O, Nrecv — NO))
lwm := | No/2| — 1 % ensures lwm < Nyeco
endif
endif

Fig. 3. Additional variables and pseudo-code for packet transmission in the first
variant of the on-demand flow control algorithm.

The number of credits is restored to its original value Ny when the last packet
of the message is received. However this can be safely done only if the current
number of credits available to the sender does not exceed Ny. This is ensured
by the refill policy used when the on-demand scheme is in use. If there are still
enough packets to be sent (len > Ngqq) the number of credits is restored to
its maximum value (N + Ny4q). Otherwise, only the fraction of credits that
guarantees correctness is restored. See reference [5] for the details of the formal
proof.

ol Lalu fyl_i.lbl
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packet reception from process s:
if packet contains a credit refill then
Nsend = Nsend + credits refilled
endif
if not a refill packet then

Nrecv 1= Nrecv — 1
Nfreed := Nfreed T 1
if len # 0 then % mnot first packet
len :=len —1 % on-demand scheme used

else if first packet then
if message length in packets > 2 (No — lwm) then
len := message length in packets — 1 % long enough message
Nada := min(Navait, Nopt, len + 1) % on-demand scheme used
Navait := Navail — Nadd
lwm := min(lwmopt, | (No + Naaa)/2] — 1)
Nfreed ‘= Nfreed + Nadd

endif

endif

if last packet then % len =10
Navail = Navait + Nadd
Ngaa :=0

lwm = |No/2| —1
Nfreed = No — Nrecv

endif
if Nrecy < lwm then % credits must be refilled
if len =0V len > N,qq then % on-demand scheme not
send a refill packet with nyycea[s] credits % used or all credits
Nrecy = Nrecv + Nfreed % must be refilled
Nfreed ‘= 0
else % partial refill

send a refill packet with min(nysreed, len — max(0, nreco — No)) credits
Nrecv := Nrecv + min(nfreed7 len — max(O, Nrecv — NO))
Nfreed := Nfreed — min(nfreed7 len — max(O, Nrecv — NO))
lwm = |No/2| — 1 % ensures lwm < Nreco
endif
endif
endif

Fig.4. Pseudo-code executed at packet reception in the first variant of the
on-demand flow control algorithm.
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This time, the correctness of the algorithm cannot be based on condition (1)
for two reasons. On one hand, variables ngse)n 4[] and nsaz)cv[s} cannot be updated
simultaneously to discard the credits in excess because this time processes s and
r are informed that message transmission is terminated at different times. On the
other hand, it may happen that, after s has sent the last packet, it may receive
old refills containing credits in excess that must be discarded too. In place of
condition (1), we may require that the following weaker condition is satisfied at
any time:

n{) ol 40l — Al o =nl[s), 2)

where A is a non negative term such that nfi}?ll — A > 0. Note that A basically

represents credits in excess refilled by r, but not received yet by s. This new
invariant coincides with condition (1) if A = 0, whereas it implies nSe:z) ork <
ngj;)cv[S}, when A > 0. This guarantees that r has always enough space to receive
all packets sent by s.

The details of the protocol can be found in [5]. There we show that it can be
efficiently implemented and that its costs are constant, unless s sistematically

overstimates message length when message transmission starts.

4 Experimental Results

From experiments reported in section 2, we observed that peak bandwidth can
be attained if at least 50 credits are assigned to each sender, and the lower water
mark is set to 20. We then assigned these values to Nop,: and lwmpe, respectively.

We measured the bandwidth attainable by the COD protocol between one
sender and one receiver versus the number of nodes in the system and repeated
the experiments for different message lengths and packet sizes. The results cor-
responding to a packet size of 1024 bytes are reported in figure 5, compared with
the bandwidth achieved by SCP in the same conditions. For the sake of brevity,
we do not report the graphs corresponding to other packet sizes, since they show
very similar behaviors.

The data corresponding to 64 KBytes messages are reported in figure 5(a).
Although the bandwidth decreases even when COD is used, the improvement
with respect to SCP is more than 40% in the worst case. Moreover, the threshold
at which the sender remains idle waiting the refill packet increases. The situa-
tion is much better for longer messages. When message length is 256 KBytes
(figure 5(b)), the bandwidth is independent of the system size if COD is used,
while it can decrease more than 50% with the SCP algorithm. These results indi-
cate that the COD algorithm has beneficial effects even for middle size messages
(64 KBytes).

5 Related Work and Discussion

In highly reliable, high performance networks like Myrinet, host-to-host flow
control is introduced at the software level essentially to guarantee reliability at
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the communication library interface through buffer overflow avoidance. Even
though simplified versions of the schemes available for non-reliable networks [13]
can be reused in this context, credit-based protocols have been preferred in most
cases.

The Active Messages library [2] provides buffer management and reliability
and uses a credit-based algorithm very similar to that used in FM. Reply mes-
sages are exploited to refill consumed credits. The designers of U-Net [3] did
not include flow control and reliable buffer management in the library since it
was initially developed for ATM networks that are themselves non-reliable. In
VMMC-2 [1] data is deposited directly in receiver’s memory and flow control is
up to higher level software. BIP [12] is a minimal library and does not guarantee
reliability.

In the FM project, after an initial attempt to use a rate-based sliding win-
dow protocol requiring acknowledgements [11], the SCP protocol described in
sections 2 and 3 has been used. The protocol proved to be successful because it
is well suited to the characteristics of the Myrinet network. However, the high
bandwidth available at the network level makes the management of buffer space
internal to the library very critical, and the static policy used by SCP limits
performance scalability.

Recently Kung et al. have proposed an adaptive credit allocation policy in the
framework of a per Virtual Channel (VC), link-by-link, credit-based protocol for
ATM networks, called Credit Update Protocol (CUP) [8]. The adaptive policy
dynamically adjusts the buffer space allocated to an individual VC according to
the actual bandwidth usage of the VC, achieving a more efficient use of available
buffer space.

This proposal differs from our Credit On-Demand protocol in many respects.
First, relevant parameters like Round Trip Time (RTT) and packet size are
very different in the two cases. Moreover, RTT between hosts cannot be upper
bounded like that between switches because of contention in the network and
non-coordinated scheduling at the hosts. Hence, many assumptions which the
policy proposed in [8] relies upon are no longer valid in our scenario. Second,
while in CUP credits assigned to a VC cannot be got back if the VC stops
transmitting, our protocol guarantees that the sender always either uses the
assigned credits (simplified version) or returns credits in excess (general version).
This property is particularly desirable in scientific applications where it may
happen that pair of processes do not communicate for a relatively long time
interval.

Another deep difference is that COD is essentially intended to be a mecha-
nism that senders can use to dynamically acquire and release additional credits
from their targets. In section 3 we have used the mechanism to implement a
per message credit allocation policy and suggested simple criteria to decide how
buffersspacescouldsbersharedgbetweenpallypotential senders at initialization time.
While these choices can suffice when regular communication patterns are used,
more dynamic, adaptive policies/could be needed to deal with general situations.
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COD, especially in its general version, can be used as a basis to implement
these policies. It allows credits to be acquired and (partially) released by senders
at any time. For instance, in both versions of the algorithm the receiver can re-
cover at any time at most min(nsreed, Nadd) credits simply decreasing variables
Nfreed a0d Ngqq. Moreover, in the general version, the sender can release cred-
its at any time without substantial changes in the protocol [5]. This ability to
dynamically change the credit assignment can be used to improve the fairness
of the assignment policy when multiple senders compete for additional credits.

6 Conclusions

In this paper we have proposed the Credit On-Demand protocol, a variant of
the static flow control protocol used by FM, that makes better use of available
buffer space at the receivers. COD allows senders to require additional credits
when they begin transmitting a message, and release them when message trans-
mission terminates. We have reported experimental data that demonstrate that
COD improves scalability and uses the resources available in the system more
efficiently.

The limitations of our proposal are that it is effective only for long enough
messages, and that there must not be communication hot spots in the system.
These limitations however can be overcome because COD is a flexible mechanism
that can be combined with more sophisticated, adaptive assignment policies.
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Abstract. Standard user-level networking architecture such as Virtual
Interface (VI) Architecture enables distributed applications to perform
low overhead communication over System Area Networks (SANs). This
paper describes how high-level communication paradigms like stream
sockets and remote procedure call (RPC) can be efficiently built over
user-level networking architectures. To evaluate performance benefits
for standard client-server and multi-threaded environments, our focus
is on off-the-shelf sockets and RPC interfaces and commercially avail-
able VI Architecture based SANs. The key design techniques developed
in this research include credit-based flow control, decentralized user-level
protocol processing, caching of pinned communication buffers, and de-
ferred processing of completed send operations. The one-way bandwidth
achieved by stream sockets over VI Architecture was 3 to 4 times bet-
ter than the same achieved by running legacy protocols over the same
interconnect. On the same SAN, high-performance stream sockets and
RPC over VI Architecture achieve significantly better (between 2-3x) la-
tency than conventional stream sockets and RPC over standard network
protocols in Windows NTT™ 4.0 environment. Furthermore, our high-
performance RPC transparently improved the network performance of
Distributed Component Object Model (DCOM) by a factor of 2 to 3.

1 Introduction

With the advent of System Area Networks (SANs), low latency and high band-
width communication has become a reality. These networks have opened new
horizons for cluster computing. But, the centralized in-kernel protocol process-
ing in legacy transport protocols such as TCP/IP prohibits applications from
realizinggtheprawphardwarepperformancey offered by underlying SANs. In order
to address this problem, Virtual Interface (VI) Architecture standard was de-
veloped. However, building high-level applications using primitives provided by
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VI Architecture is complex due to lack of transport functionality such as flow
control, communication buffer management, fragmentation/re-assembly.

On the other hand, stream sockets and remote procedure calls (RPCs) pro-
vide simple and easy to use communication abstractions for distributed applica-
tions and distributed object computing frameworks such as DCOM [5], Java RMI
[9], CORBA [12]. Stream sockets provide a connection-oriented, bi-directional
byte-stream model for inter-process communication. RPC mechanism enables
a program to call procedures that execute in other address space and it hides
networking details from applications.

This paper provides prototype designs and implementations of 1) stream
sockets over VI Architecture and 2) RPC over VI Architecture. The design goals
considered were:

— Performance: deliver close to raw end-to-end performance to multi-threaded
client/server applications.

— Legacy support: support RPC/sockets application programming interfaces
as much as possible.

— CPU overhead: minimize CPU cycles spent per byte transferred.

Optimizations for special cases such as single-threaded applications and modify-
ing kernel components such as virtual memory management system can be used
to further improve performance. Most of these techniques trade off application
transparency and ease of use, and thus, were not considered as design goals.

This paper contributes VI Architecture specific design techniques, developed
for optimizing stream sockets and RPC performance, such as credit based flow
control, decentralized user-level protocol processing, caching of pinned commu-
nication buffers, and deferred processing of completed send operations. On Win-
dows NTTM 4.0, user-level stream sockets and RPC over VI Architecture achieve
significantly better performance (2-3x improvement in latency and 3-4x improve-
ment in one-way and bi-directional bandwidths) than stream sockets and RPC
with legacy network protocols (TCP/IP) on the same SAN. For small messages,
RPC over VI Architecture achieves an end-to-end latency comparable to the la-
tency achieved by the local RPC implementation on the same system. Further,
this translated into 2-3x improvement in DCOM network performance transpar-
ently.

The rest of the paper provides the details of the design and evaluation of
stream sockets and RPC over VI Architecture. The outline of the remaining
paper is as follows. Section 2 provides an overview of VI Architecture. The design
and performance evaluation of stream sockets over VI Architecture is described
in Section 3. Section 4 describes the design of RPC over VI Architecture and
evaluates its performance. Section 5 provides a summary of the related work.
Finally, conclusions and future work are presented in Section 6.

2 Virtual Interface (VI) Architecture

VI Architecture is a user-level networking architecture designed to achieve low
latency, high bandwidth communication within a computing cluster. To a user
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process, VI Architecture provides direct access to the network interface in a
fully protected fashion. The VI Architecture avoids intermediate data copies
and bypasses operating system to achieve low latency, high bandwidth data
transfer. The VI Architecture Specification 1.0 [15] was jointly authored by Intel
Corporation, Microsoft Corporation, and Compaq Computer Corporation.

Virtual Interface Architecture uses a VI construct to present an illusion to
each process that it owns the interface to the network. A VI is owned and main-
tained by a single process. Each VI consists of two work queues: one send queue
and one receive queue. On each work queue, descriptors are used to describe
work to be done by the network interface. A linked-list of variable length descrip-
tors forms each queue. Ordering and data consistency rules are only maintained
within one VI but not between different VIs. VI Architecture also provides a
completion queue construct used to link completion notifications from multiple
work queues to a single queue.

Application
vi

Consumer 0S Communication Interface
Sockets,MPI,Cluster,Other
VI User Agent |
User Mode Open/Connect/ ‘Send/Receive/
Register Memory RDMARead /RDMAWrite

=

<@

Kemel Mode

SEND
RECEIVE
SEND
RECEIVE
RECEIVE
[COMPLETION

Vi Kernel Agent
VI Provider

VI Network Adapter I

Fig. 1. VI Architecture

Memory protection for all VI operations is provided by protection tag (a
unique identifier) mechanism. Protection tags are associated with VIs and mem-
ory regions. The memory regions used by descriptors and data buffers are reg-
istered prior to data transfer operations. Memory registration gives VI NIC a
method to translate a virtual address to a physical address. The user receives
an opaque memory handle as a result of memory registration. This allows a user
to refer to a memory region using a memory handle/virtual address pair with-
out worrying about crossing page boundaries and keeping track of the virtual
address to tag mapping.

The VI Architecture defines two types of data transfer operations: 1) tradi-
tional send/receive operations, and 2) Remote-DMA (RDMA) read/write oper-
ations. A user process posts descriptors on work queues and uses either polling
or blocking mechanism to synchronize with the completed operations. The two
descriptorgprocessinggmodelsysupportedgby VI Architecture are the work queue
model and the completion queue model. In the work queue model, the VI con-
sumer polls or waits for completionsfon a particular work queue. The VI con-
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sumer polls or waits for completions on a set of work queues in the completion
queue model. The processing of descriptors posted on a VI is performed in FIFO
order but there is no implicit relationship between the processing of descrip-
tors posted on different VIs. For more details on VI Architecture, the interested
reader is referred to [6,15]. The next two sections describe design and implemen-
tation of stream sockets and RPC over VI Architecture.

3 Stream Sockets over VI Architecture

Stream sockets provide connection-oriented, bi-directional byte-stream oriented
communication model. Windows Sockets 2 Architecture utilizes sockets para-
digm and provides protocol-independent transport interface. Figure 2 shows an
overview of Windows Sockets 2 architecture [16]. It consists of an application
programming interface (API) used by applications and service provider interfaces
(SPIs) implemented by service providers.

WinSock WinSock
Application Application

2
API

Transport Functions Name Space Functions

The WinSock2 DLL
WS2_32.DLL (32 bit)

2 2
Transport SPI Name Space SPI
Transport Transport Name Space | | Name Space
Service Service Service Service
Provider Provider Provider Provider

Fig. 2. Windows Sockets 2 Architecture

This extensible architecture allows multiple service providers to coexist. The
transport service providers implement the actual transport protocol and the
name space providers map WinSock’s name space SPI to some existing name
space. In this research, Windows Sockets 2 Architecture is used to provide high
performance VI-based stream sockets. The new transport service provider was
completely implemented at user-level.

3.1 Design and Implementation

User—level decentrahzed protocol processmg, credit-based flow control, caching of
ization of CPU overhead are the main
over VI Architecture implementation.
re described next.
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Endpoint Mappings and Connection Management The connection-ori-
ented design provided by VI Architecture maps well to stream sockets. Each
stream socket (endpoint) is mapped to a VI. Each endpoint consists of
send /receive descriptors, registered send/receive buffers, and information for
credit based flow control. Each endpoint has a queue of received buffers con-
taining data yet to be read by the application. In order to reduce number of
memory registrations, global pools of send/receive descriptors are created and
registered within a process during service provider initialization. During creation
of an endpoint, descriptors are assigned from these global pools. Upon destruc-
tion of an endpoint, descriptors are returned back to the global pools. A queue
of pending connection requests is maintained at each endpoint. A dedicated
thread manages connection requests on the endpoint. IP port numbers are used
as discriminators in underlying connection establishment between VIs.

Data Transfer and Flow Control The reliability mode used in data transfers
is Reliable Delivery. Reliable delivery VI guarantees that the data submitted for
transfer is delivered exactly once, intact, and in the order submitted, in the ab-
sence of errors. Transport errors are extremely rare and considered catastrophic.
In network interfaces that emulate VI functionality, reliable delivery is commonly
implemented in NIC firmware or software. In native VI NICs (such as GNN1000
[8]), the hardware provides reliable delivery. Due to the use of reliable delivery
Vs, fragmentation of the messages can be handled without using sequence num-
bers. Furthermore, the transport service provider need not worry about manag-
ing acknowledgements and detecting duplicates. The timeout and retransmission
mechanisms are not incorporated in the transport service provider as transport
errors are rare and connection is broken when transport errors occur.

Three types of messages used in data transfer are CreditRequest, CreditRe-
sponse, and Data. The transport service provider is responsible for managing
end-to-end flow control between two endpoints. For providing end-to-end flow
control, a credit-based scheme is used. If the number of send credits is suffi-
cient, then the sender prepares and sends the packet. Otherwise, the sender
sends a credit request (CreditRequest) and waits for the credit response (Cred-
itResponse). Upon receiving credit response, it continues sending packets. In
response to sender’s request for credit update, the receiver sends the credit re-
sponse only when it has enough receive credits (above the low water mark). In
the case of not having enough credits when the credit request arrives, the receiver
defers the sending of credit response until sufficient receive credits are available.
As application consumes the received data, receive credits are regained. Credit-
based flow control scheme and use of reliable delivery VIs provide low overhead
user-level protocol processing.

Descriptor Processing In VI Architecture, a data transfer operation is split
intostworphasessinitiationof thejoperation (posting a descriptor) and completion
of the operation (polling or waitiing for a descriptor to complete on a work
queue). Due to push model of processing and high-speed reliable SANs, each
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send descriptor completes quickly once it reaches the head of the send queue.
So in order to reduce interrupts, polling is used for checking completion of send
descriptors. Checking completion of a send descriptor is deferred until either
there are not enough send credits available or the entire message is posted. This
type of deferred de-queuing of send descriptors reduces CPU overhead compared
to when polling immediately after posting each send descriptor.

The transport service provider maintains a small-sized LRU cache of regis-
tered application buffers. This allows zero-copy sends for frequently used send
buffers. The application data is copied into pre-registered send buffers only when
the application buffer is not found in the cache and is not added to the cache.
To allow application specific tuning, the maximum number of LRU cache entries
and the minimum size of registered application buffer are kept configurable.

Receive descriptors need to be pre-posted prior to posting of the matching
send descriptors on the sender side. The data is always copied from the reg-
istered received buffers to the buffers supplied by the application for receiving
data. The copying of data on the receiver side can be overlapped with VI NIC
processing and physical communication. The receiver waits when there is no
data available on the socket. When the receiver wakes up due to completion of a
receive descriptor, the receiver de-queues as many completed receive descriptors
as possible. This scheme for processing receive descriptors reduces the number
of interrupts on the host system.

The transport service provider for stream sockets over VI Architecture was
implemented at user-level. This allows decentralized protocol processing on per
process basis. The user-level buffer management and flow control scheme do not
experience kernel like restrictive environment. The communication subsystem
becomes an integrated part of the application and this allows for an application
specific tuning. The next subsection provides experimental evaluation of stream
sockets over VI Architecture.

3.2 Experimental Evaluation

In the experiments involving micro-benchmarks, a pair of server systems, with
four 400 MHZ Pentium? II Xeon™™ processors (512K L2 cache), Intel AD450NX
64-bit PCI chipset, and 256 MB main memory, was used as a pair of host nodes.
GigaNet’s cLANTM GNN1000 interconnect (full duplex, 1.25 Gbps one-way) [8]
with VI functionality implemented on NIC hardware is used as VI NIC. The
software environment used for all the experiments included Windows NTTM 4.0
with service pack 3 and Microsoft Visual C++ 6.0. As a default, the Maximum
Transfer Unit (MTU) per packet used by the stream sockets over VI Architecture
was 8 K bytes and credit-based flow control scheme reserved an initial receive
credits of 32 for each connection. Unless stated, all the experimental results were
obtained using these default values.

Round-Trip Latency In distributed applications, round-trip latencies of small
messages play an important role in the performance and scalability of the sys-



High Performance Sockets and RPC over VI Architecture 97

tem. In order to measure round-trip latency, a ping-pong test was used in the ex-
periments. Figure 3 compares the application-to-application round-trip latency
achieved (averaged over 10000 runs) by raw VI Architecture primitives, stream
sockets over VI Architecture (GNN1000), TCP/IP over Gigabit Ethernet, and
TCP/IP over GNN1000. The round-trip latency achieved by stream sockets over
VI Architecture is 2-3 times better than the round-trip latency achieved by both
TCP/IP over Gigabit Ethernet and TCP/IP over GNN1000. Moreover, the av-
erage round-trip latency achieved for a given message size is within 50% of the
round-trip latency achieved using raw VI architecture primitives.
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In order to measure SMP scalability of stream sockets over VI Architecture,
a multi-threaded ping-pong test (where each thread independently ping-pongs
i Figure 4 provides the SMP scalability
to measure scalability was the number
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of the protocol processing was performed in parallel. The primary reasons for
limited scalability for large messages were the use of single VI NIC for processing
the messages sent and received by multiple threads and availability of single I/O
channel on host system (PCI bus). VI NIC performs the tasks of multiplexing,
de-multiplexing, putting user-level data on the wire, copying received data into
user-level buffer, and data transfer scheduling. Hence, for large messages, the
VI NIC processing overhead can become significant. This suggests that having
multiple VI NICs and multiple I/O channels can further improve SMP scalability.
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Bandwidth Figure 5 provides comparison of application-to-application one-
way bandw1dths (measured using a stream of 10000 messages) achieved by raw

: Architecture (GNN1000), TCP/IP over
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or VI Architecture is 3 to 4 times better
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than the same achieved by running legacy protocols (TCP/IP) over both the
same SAN and Gigabit Ethernet. The one-way bandwidth achieved by stream
sockets over VI Architecture is within 10% of the one-way bandwidth achieved
by the raw VI Architecture primitives using same descriptor processing models
and synchronization mechanisms.

Similarly, Figure 6 compares the bi-directional bandwidths achieved by vari-
ous messaging layers. The bi-directional bandwidth test has two threads (one
sender and one receiver) using two separate communication endpoints. The
sender thread sends a stream of messages on one endpoint and the receiver
thread receives a stream of messages on another endpoint. The receiver band-
widths achieved on both nodes were added to obtain bi-directional bandwidth.
Similar to one-way bandwidth, for large messages, the bi-directional bandwidth
achieved by stream sockets over VI Architecture is 3-4 (4-5) times better than
the same achieved by running legacy TCP/IP protocol over GNN1000 (Gigabit
Ethernet). For large messages, the bi-directional bandwidth achieved by stream
sockets over VI Architecture stays within 10% of the bi-directional bandwidth
achieved by using raw VI Architecture primitives. Figure 7 shows the number
of CPU cycles spent per byte transferred at different messaging layers. These
experiments demonstrate that stream sockets over VI architecture not only
achieve substantially better performance than legacy transport protocols, but
also spend significantly less host CPU cycles per byte transferred than TCP /IP.
Table 1 summarizes 4-byte round-trip latency and 50000-byte one-way band-
width achieved by various messaging layers.
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Table 1. Performance of Various Messaging Layers

Messaging Layer 4-byte 50000-byte
Round-trip One-way

Latency (in pus) Bandwidth

(in 10° bps)

Raw VI Architecture Primitives 52.4 753.2
Stream Sockets over VI Architecture 74.9 697.3
TCP/IP over GNN1000 219.1 211
TCP/IP over Gigabit Ethernet 170.5 175
NTTM 4.0. Experimental results in our earlier research [10] have shown that

the latency incurred in MSRPC over conventional high-speed networks such as
Gigabit Ethernet is dominated by the overhead in the legacy transport protocol
(TCP/IP) stack. The primary focus of this prototype effort was to transparently
improve the performance of RPC and DCOM applications over SANs by reducing
the transport protocol overheads.

4.1 Operational Overview

MSRPC system is primarily composed of the IDL compiler generated proxy
and stubs, the RPC runtime and the various dynamically loadable transport
modules. The remoting architecture in DCOM [5] is abstracted as an Object
RPC (ORPC) layer built over MSRPC. As a natural consequence, DCOM wire
protocol performance directly follows the performance of MSRPC. MSRPC pro-
vides a high performance local RPC transport implementation for procedure
calls across address spaces on the same machine. For procedure calls across the
network, the transport interface in MSRPC supports both connectionless and
connection-oriented transport interfaces. Figure 8 shows the operational view
of the MSRPC system supporting multiple transport providers. Building high
performance RPC over our stream sockets prototype was definitely a viable
option. Rather, we added a connection-oriented MSRPC loadable transport di-
rectly over VI architecture to avoid additional layering overheads. Our prototype
RPC transport' makes use of the low-latency and high reliability properties of
SANSs. The following sub-sections describe in detail the design and implementa-
tion trade-off made in the RPC transport for SANSs.

4.2 RPC Transport Design for SANs

The main objective for the transport design was to improve the network perfor-
mance of multi-threaded RPC and DCOM client/server applications. Any per-
formance improvement possible by modifying the MSRPC runtime and/or the

! Rajesh S. Madukkarumukumana implemented the RPC transport at Oregon Gradu-
ate Institute of Science & Technology (OGI). Access to MSRPC source was provided
under Microsoft Windows NTZ™ source code agreement between Microsoft and Ore-
gon Graduate Institute for educational research purposes.
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marshaling engines was traded-off for application transparency and simplicity.
These design choices were further motivated by the fact that the legacy network
protocol stack contributed to the most part of the standard RPC latency. To
co-exist with other transports, the SAN transport supports a new RPC protocol
sequence (ncacn-san_vi) and is registered with the system using the standard
WinNTTM registry. Our transport uses a connection-oriented design for perfor-
mance and utilizes the higher reliability modes offered by SANs. The transport
module performs various operations like static/dynamic endpoint mapping, lis-
tening for connections, data transfers, connection tear-downs, etc. The transport
module also provides the RPC runtime system information like the MTU of the
transport and the buffer size needed to manage each endpoint and connection.

Endpoint Mapping In response to the RPC binding calls from the appli-
cation, the MSRPC runtime calls the transport module to setup static and
dynamic endpoints. The RPC transport takes machine name as the network
address and accepts any string as an endpoint. The endpoint strings are used
as discriminators in connection establishment between VIs. Dynamic endpoints
use universally unique identifiers (UUIDs) as discriminators. On the server side,
the receive queues of all VI connections created under an RPC endpoint are
attached to a Completion Queue (CQ). The send queue for each VI connection
is managed independently. The completion queue provides a mechanism to poll
or wait for receive completions from multiple VIs associated with a given end-
point. This is equivalent to a traditional select functionality, but has the distinct
advantage that the receive operation (after the select) does not need a kernel
transition to de-queue the completed receive buffer. Since each send queue is
managed separately, send operations can be performed independently on any
connection. Connection requests from the RPC runtime on behalf of any client
application thread is mapped directly to a unique VI. The client side does not
usejcompletionsqueuesy(GQs)pbutymanages the receive and send queues for each
connection independently. The connection management and flow control design
are discussed next.
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Connection Management and Flow Control Today, most SANs provide a
message-oriented reliable transport service, but do not provide flow control or
support for out-of-band data. In addition to this, user-level networking architec-
tures like VI Architecture require explicit registration of communication buffers.
Compared to the centralized in-kernel implementation of flow control and buffer-
ing in legacy transport protocol stacks (TCP/IP), the RPC transport for SAN
uses a de-centralized approach for user-level connection management and flow
control. Upon endpoint creation request from the server side RPC runtime, the
transport creates a CQ and registers the needed receive buffers and descriptors.
The endpoint accepts connection requests by creating/binding VI handles with
pre-posted receive buffers. After connection setup, a three-trip protocol between
the client and the server-transports negotiates the MTU and the available cred-
its on either side. The server-side RPC runtime is notified of newly accepted
connections by using callbacks.

Similar to stream sockets over VI Architecture, the credit based flow con-
trol scheme uses three types of messages: Data (contains requests/replies from
MSRPC runtime), RTS (sent to get more credits from receivers), and CTS (sent
in response to an RTS message). The flow control information consists of packet
sequence number, number of available credits and the sequence number of the
last received packet. The transport encodes the flow control information into
the ImmediateData field of VI descriptors. The sender is allowed to send a data
packet only if there are enough credits available. If enough credits are not avail-
able, more credits can be requested by sending an RTS request message and
waiting for a CTS reply message. An automatic RTS/CTS credit synchroniza-
tion happens whenever the number of send credits goes below low watermark.
Due to lightweight nature of this RTS/CTS scheme and the efficient re-use of re-
ceive buffers, automatic credit update schemes were not considered. The service-
oriented abstraction and synchronous nature of RPC keep the buffer manage-
ment much simpler than stream sockets where receive buffers are asynchronously
consumed by the application.

Buffer Management and Data Transfer The RPC transport achieves zero-
copy sends of marshaled buffers passed from the RPC runtime by pinning them
first if needed, then fragmenting and queuing it on the send queue of the appro-
priate VI. Polling is used to complete send operations without kernel transitions.
To avoid the costly registration and de-registration of buffers on each send op-
eration, a cache of previously marshaled buffers is maintained in LRU fashion.
Since RPC runtime itself uses cached buffers to marshal data on a per connec-
tion basis, a large percentage of cache hits was observed in the experiments. Any
small-sized send buffer (typical in RPC) that misses this cache is copied to a
pre-registered send buffer before posting the send descriptor.

The RPC transport interface supports two types of receive semantics for net-
worksl/ @:ReceiveAnyandsReceiveDirects The ReceiveAny interface uses a single
thread at a time to service a set of clients connected to an endpoint. In legacy
transport protocols such as TCP/IP, [the ReceiveDirect path dedicates a thread
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per connection and saves an extra kernel call compared to the ReceiveAny path.
The use of CQs and user-level receive operations in our transport allows efficient
implementation of ReceiveAny. This reduces the performance advantages of addi-
tionally implementing ReceiveDirect. Both the client and server perform a single
copy of data from the receive buffers to RPC runtime buffers. The RPC runtime
is called back to do any re-allocation of the marshaled buffer for re-assembly of
multiple fragments. After copying the message, the de-queued receive descriptors
are re-posted immediately on the receive queue to keep the flow-control credits
fairly constant.

The use of reliable delivery VIs (as discussed in Section 3.1), efficient caching
of marshaled send buffers, zero-copy user-level sends and single copy receive
completions in the RPC transport contributes to the high performance achieved.
In addition, to enable DCOM applications to transparently run over SANs, the
DCOM Service Control Manager (SCM) in WinNT?™ was modified to listen on
the new RPC protocol (in addition to other legacy protocols) for COM object
invocation requests. The performance analysis of RPC and DCOM applications
over the SAN transport is discussed next.

4.3 Experimental Results

In order to evaluate the RPC and DCOM performance improvements over the
user-level RPC transport, a set of experiments was carried out using the same
experimental setup described in Section 3.2. All DCOM and RPC latency mea-
surements used bi-directional conformant arrays as method parameters. Figures
9 and 10 compare the round-trip RPC and DCOM method call latencies (aver-
aged over 10000 runs) across various RPC transports respectively. On the same
SAN, RPC and DCOM over VI Architecture achieve significantly (2-3x) better
latency than RPC and DCOM over legacy network protocols (TCP/IP). Fur-
thermore, application-to-application latency achieved by RPC and DCOM is
comparable to the latency achieved by local RPC (LRPC) and COM.

RPC and distributed object abstractions are becoming norm to build multi-
threaded client/server applications. While several previous research efforts
[1,3,11,17] have shown the performance improvement possible through efficient
thread and function dispatching in specialized environments, our research focuses
more on transparently improving the performance of commercial multi-threaded
implementation like MSRPC.

The RPC transport implementation creates a new VI connection to the server
endpoint for each client application thread using the same RPC binding handle.
The de-centralized user-level protocol processing done independently on a per
connection basis eliminates major synchronization and multiplexing overheads
otherwise required for buffer management in the transport. Figure 11 shows the
scalability achieved on a 4-way SMP system with multiple application threads
using a single RPC binding handle over the RPC transport. This demonstrates
thepefficiencypofycreditybasedaflowncontrol and buffer management. Figure 12
shows that the host CPU cycles spent per byte transferred using the high perfor-
mance RPC transport is substantially|lower than using legacy transport protocol
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(TCP/IP) over the same SAN and Gigabit Ethernet. Table 2 summarizes 4-byte
round-trip latencies and 8000-byte round-trip latencies achieved by various RPC
transports.

Table 2. MSRPC Performance Across Various Transports

Messaging Layer 4-byte 8000-byte
Round-trip Round-trip
Latency (in ps) Latency (in us)

Local RPC (LRPC) 62.7 314.8

RPC over VI Architecture (GNN1000) 111.21 448.1

RPC over TCP/IP (GNN1000) 297.1 1039.7

RPC over TCP/IP (Gigabit Ethernet) 243.5 995.8

5 Related Work

Damianikis et al. [4] described the implementation of high performance stream
sockets compatible abstraction over virtual memory mapped communication
(VMMC) in the SHRIMP multi-computer using a custom designed network in-
terface. Thorsten von Eicken et al. [7] showed how traditional protocols (TCP/IP,
UDP/IP) can be efficiently supported over U-Net (a user-level networking archi-
tecture). Fast sockets [14] were implemented to provide low overhead protocol
layer on top of high performance transport mechanism (active messages). Pakin
et al. [13] implemented user-level sockets library over low-level FM messaging
layer. In all of these previous efforts, the focus was on to build efficient socket ab-
i i ssaging layer. In this paper, we add-on
for efficient stream sockets implemen-
architecture (VI Architecture).
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Muller et al. [11] showed how specialization techniques like partial evalua-
tion can be applied to improve RPC performance. Cheriton et al. [17] proposed
a specialization methodology for applications to modify and tune the RPC sys-
tem to meet specific requirements. While these techniques are possible in custom
application environments, our focus in this research is to transparently improve
performance of applications using commercial RPC systems. Bilas and Felten
[1] described a SunRPC implementation over the SHRIMP multi-computer, but
concentrated on achieving the best absolute performance in single threaded en-
vironments. Zimmer and Chien [18] described in detail the impact of inexpen-
sive communication to MSRPC performance by implementing a RPC datagram
transport over Fast Messages (FM). Their implementation exposed the pes-
simistic assumptions made by the MSRPC runtime about datagram transports.
Chang et al. [3] proposed a software architecture for zero-copy RPC in Java
across user-level network interfaces. Their work showed interesting RPC latency
improvements, but required manual generation of proxy/stub code. Our user-
level RPC transport’s connection-oriented design and credit based flow control
utilizes reliable delivery mode offered by SANs to achieve significant performance
improvements transparently.

6 Conclusions and Future Work

User-level networking architecture like VI Architecture provides low level prim-
itives for high performance communication over SANs. Building high-level scal-
able distributed applications require this type of communication performance
without sacrificing ease of programming. This paper demonstrates how high
level communication abstractions like stream sockets and RPC can be efficiently
implemented over VI Architecture. Our prototype implementations achieve sig-
nificantly better performance (3-4x bandwidth improvement for stream sockets,
2-3x latency improvement for stream sockets, MSRPC, and DCOM) over legacy
network protocols (TCP/IP) on the same SAN. We are currently investigating
variants of credit based flow control and optimized large data transfers with
RDMA operations provided by VI Architecture. A possible direction for future
work is to extend support for overlapped and asynchronous operations in stream
sockets and RPC over VI Architecture. Another interesting direction is to ex-
periment with high level RPC and distributed objects based applications such
as transaction processing monitors, web servers, and N-tier applications over VI
Architecture.
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Abstract. This paper describes the Scheduled Transfer (ST) protocol
that can be used by applications to bypass the operating system (OS)
for network communications. The design of ST has been influenced by
two overriding goals. First, we want ST to be used to move data be-
tween multiple vendors’ machines and over different media; therefore,
we have proposed ST as an ANSI standard and defined a network proto-
col that is independent of the underlying physical layer. Second, ST has
been designed to operate in a large, heavily-loaded scientific computing
environment, and this goal is manifested in several ways. ST has been de-
signed to minimize receive processing, relieving network congestion that
could occur if the receiver exerts backpressure into the network. ST pro-
vides a mechanism by which upper layer protocol (ULP) headers can be
separated from application data, a capability that is generally necessary
to avoid a subsequent memory-to-memory copy in the host. ST includes
support for reassembly of application messages that are striped across
multiple physical interfaces. ST also includes a flow control mechanism
that relieves the ULP from this responsibility and provides the opportu-
nity for the implementor to offload this function to the network interface
(NI).

1 Introduction

Recent advances in commercially available network technologies, e.g., HIPPI-800
and 6400 [11], ATM/SONET [2], Myrinet [3], and Gigabit Ethernet [10], have
presented the possibility of connecting PC-class machines and high-end worksta-
tions to interconnects that have bandwidths approaching and sometimes exceed-
ing the main memory bandwidth of the host. This contrasts with the situation
just a few years ago when memory bandwidths were frequently many times the
network bandwidth. Because the time spent in physical transmission of a mes-
sage has dropped so significantly, software overheads in the host system have
been exposed as the major bottleneck in achieving low-latency, high-bandwidth
communications.

Typical operating system- (OS) implemented network protocol stacks result
imunnecessarypmemory=to=memoryscopies and excessive interrupts that can limit
application-achievable throughput to a fraction of what is theoretically achiev-
able and increase end-to-end latency by an order of magnitude. A solution to this

A. Sivasubramaniam, M. Lauria (Eds.): CANPC’99, LNCS 1602, pp. 108-121, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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problem is to bypass the host OS for common send and receive operations while
still maintaining all the features found (and expected) in an OS-implemented
protocol stack: the ability to share the network and protection and fairness
among applications.

OS bypass techniques have been studied extensively in recent years. Some of
the protocols that have been proposed are: SHRIMP [4], Hamlyn [5], APIC [(],
Osiris [7], AM [8], U-net [9], FM [13], PM [12,14], and VIA [15].

This paper describes the Scheduled Transfer (ST) OS bypass protocol [11].
The design of ST has been influenced by two overriding goals. First, we want ST
to be used to move data between multiple vendors’ machines and over different
media; therefore, we have proposed ST as an ANSI standard and defined a
network protocol that is independent of the underlying physical layer.

Second, ST has been designed to operate in a large, heavily loaded scientific
computing environment. OS bypass protocols all attempt to provide low-latency,
high-bandwidth communications to the application, but ST has paid specific
attention to integrating these functions with the upper and lower layer protocols
without tying itself to any particular technology.

In a heavily loaded environment, there is a possibility that the receiving net-
work interface (NI) is the bottleneck in the communications path. If the receiving
NI cannot keep up with the incoming traffic, it may either drop packets or exert
backpressure into the network. Dropping packets requires that higher layer pro-
tocols detect and retransmit the dropped packets, while exerting backpressure
into the physical interconnect causes congestion and will likely degrade other
communication paths. To avoid this situation, ST has been designed to simplify
the receiving NI's job by pushing parts of the protocol processing back to the
sender.

Attention has also been paid in integrating ST with upper layer protocols
(ULPs) by providing the capability to separate ST and ULP protocol headers
from application data, a capability that is generally necessary to avoid subse-
quent memory-to-memory copies of the data in the host [12]. ST includes support
for reassembly of application messages that are striped across multiple physical
interfaces. ST also includes a flow control mechanism that relieves the ULP from
this responsibility and provides the opportunity for the implementor to offload
this function to the NI [13,14].

We are currently implementing ST on a Myrinet-connected cluster of In-
tel PCs running Linux that we plan to use for visualization rendering. ST
will be used as the OS bypass protocol on the ASCI [1] (Accelerated Strategic
Computing Initiative) Blue Mountain machine at Los Alamos National Labora-
tory (LANL), a cluster of 48 128-processor SGI Origin 2000 symmetric multi-
processors (SMPs). We are also working with IBM, Compaq/DEC, Sun, and
PMR to develop a HIPPI-6400/ST network interface card that will connect di-
rectly into each vendors’ memory system. A major goal of this effort is to be able
to move data between the ASCI machine and the IBM-based archival storage
system.
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Table 1. An ST APIL

st_connect() Initiate an ST Virtual Connection

st_accept() Accept an ST Virtual Connection

st_disconnect/() Tear down an ST Virtual Connection

st_map_addr() Pin memory on the local host

st_unmap_addr() Unpin memory on the local host

st_send() Send a user message via a Write sequence

st_recv() Receive a user message via a Write sequence

st_request_pmr() Request a remote Persistent Memory Region (PMR)

st_get_pmr_request() | Get the request PMR parameters

st_grant_pmr() Grant a local Persistent Memory Region (PMR)

st_put() Put a user message into a remote PMR

st_get() Get a user message from a remote PMR,

st_fetchop() Get an 8-byte datum from a remote PMR and perform
an operation on it

st_done() Test whether a send,recv,put,get,fetchop has completed

st_end() End a Transfer (a send/recv or PMR)

2 ST Overview

Table 1 shows the ST API calls we have used in our implementation. We note
that an ST API is planned by the ANSI committee and may look different from
our APL.

ST is a connection-oriented protocol, that is, a Virtual Connection (VC) is
set up between two endpoints before any data are transmitted. The first three
API calls in Table 1 set up and tear down ST VCs, and the parameters for the
VC setup are shown in Table 2. The client_addr and serv_addr structures contain
IP addresses and 16-bit ports, just like TCP. The ports are used to select upper
layer services. The calls return an integer identifier for the VC (wc). VC setup
is handled by the two hosts’ OSs; therefore VC resources (e.g., ports) may be
viewed as protected entities.

The st_map_addr() call results in a system call which pins down an area of
memory in the application and informs the NI of the physical addresses of the
pages.

ST supports five types of data movement sequence: Write, Read, Put, Get,
and FetchOp. A Write sequence corresponds to the well-known send /receive mes-
sage passing model used in, for example, sockets and MPI. The Write sequence is
intended to be used as a zero-copy protocol for large messages where the receiver
specifies the location where the message is to be received. A Read sequence is
similar to a Write sequence except the receiver of the data initiates the Trans-
fer. The st_send() and st_recv() API calls map to an ST Write sequence, and
theirgparametersparegshownypingFables2mThe vc parameter is the VC identifier.
vaddr and len specify the region of memory to be sent/received into and must
have been previously pinned with st_map_addr(). The tag allows multiple sends
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and receives on the same VC to be matched. The send and receive calls may
be blocking or non-blocking, and the send_id and recv_id are identifiers that are
used in the st_done() call to test for the non-blocking Transfers’ completion.

Put, Get, and FetchOp sequences are used in conjunction with ST Persistent
Memory Regions (PMRs) and correspond to the one-sided-communication model
where the initiator of the sequence is aware of the location of the data in the
other end. A Put sequence writes data into a specified location in a remote
PMR, a Get sequence reads data from a remote PMR, and a FetchOp reads
8 bytes of data from a remote PMR, and performs some operation (e.g., clear
or increment) on it. Before these three sequences can be initiated, a chunk of
remote memory is set up in the other end and pinned down in memory, hence
the term persistent memory. Put, Get, and FetchOp operations are designed
for low-latency communications because once the PMR is set up, the sequences
proceed without any additional control messages. In particular, the Put sequence
is intended to be used for low-latency message passing where a small message
is placed into a message passing buffer in the receiver and then copied into
the application data structure. PMR sequences are also useful for implementing
shared memory software packages over non-shared-memory clusters.

Table 3 shows the API calls for a Put sequence. As in the Write sequence, a
VC is set up and an area of memory is mapped with st_-map_addr(). The sender
requests a PMR on the receiving side with the st_request_pmr() call. The VC, the
requested length of the PMR, and a tag are specified by the sender. The receiver
gets the request parameter len with the st_get_pmr_request() call, and grants the
PMR request with st_grant_pmr(). The receiver specifies its virtual address and
length of the PMR, (which may be less than the requested length) and receives an
identifier pmr_id for the PMR. The remote virtual address r_vaddr and length
r_len and pmr_id are returned to the sender in the st_request_pmr() call. The
sender then is able to put data to the receiver’s memory with the st_put() call.
The sender specifies the VC and PMR where the data is to be put. It also
specifies the local vaddr and len as well as the receiver’s virtual address r_vaddr.
A put_id is returned for the non-blocking put call, and its completion is tested
with st_done(). The Get and FetchOp sequences are similar to the Put sequence.

Table 2. An example ST Write sequence.

Sender

rc = st_connect(&client_addr, &serv_addr, &vc);

rc = st_map_addr(vaddr, len);

rc = st_send(ve, vaddr, len, tag, &send_id, ST_.NON_BLOCKING);
rc = st_done(ve, send-id, ST_BLOCKING);

Receiver

rc = st_accept(&client_addr, &serv_addr, &vc);

rc = st_map_addr(vaddr, len);

rc = st_receive(ve, vaddr, len, tag, &recv_id, ST_ NON_BLOCKING);
rc = st_done(ve, recv_id, ST_ BLOCKING);
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Table 3. An example ST Put sequence.

Sender

rc = st_connect(&client_addr, &serv_addr, &vc);

rc = st_map_addr(vaddr, len);

rc = st_request_pmr(vc, len, &r_vaddr, &r_len, tag, &pmr_id);
rc = st_put(vc, vaddr, len, r_vaddr, pmr_id, &put_id, ST_.NON_BLOCKING);
rc = st_done(ve, put-id, ST_. BLOCKING);

Receiver

rc = st_accept(&client_addr, &serv_addr, &vc);

rc = st_map_addr(vaddr, len);

rc = st_get_pmr_request(ve, &len, tag);

rc = st_grant_pmr(ve, vaddr, len, tag, &pmr_id);

2.1 The ST Header and Operations

The ST standard defines a network protocol that is independent of the underlying
physical media. ST uses a 40-byte protocol header (Figure 1) that is used for
all ST control and data operations (Table 4). Control operations (all operations
except the Data operation) are used to set up and tear down Virtual Connections,
Transfers, and Persistent Memory Regions (see below) as well as to query the
other end’s state. Control operations may include a 32-byte optional payload
that can be used by the ULP in any way it chooses. Data operations include an
ST header followed by up to 4 gigabytes of data. Figure 2 shows how the st_send()
and st_receive() API primitives are translated into an ST Write sequence which
is explained further below.

Bytes
Op \ Flags | Param 00-03
D_Port S_Port 04-07
D_Key 08-11
Cksum | B_id 12-15
Bufx 16-19
Offset 20-23
Sync 24-27
B_num 28-31
D_id 32-35
S_id 36-39

he.40-byte ST header.
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2.2 The ST Data Hierarchy

Each ST operation is identified by the 5-bit Op field in the ST header and fills
in a subset of the rest of the ST header fields. The first five operations in Table
4 are the connection setup and teardown sequences. An ST Virtual Connection
(VC) between two hosts is identified by the two 16-bit ports (D_Port and S_Port)
and two 32-bit keys (D_Key). All subsequent operations must carry both ports
(source and destination) and the destination’s key.

Multiple user messages, called Transfers, may be transmitted on a VC with
no OS intervention. A Transfer can be a Write, Read, or Persistent Memory Se-
quence. The next seven ST operations are used to set up and tear down Trans-
fers. These operations exchange the size of the Transfer (up to 24 bytes) and
choose the Transfer identifiers (S_id and D.d) of the two endpoints. In par-
ticular, a Write sequence is initiated by exchanging a Request_to_Send (RTS),
Request_Answer (RA) pair (Figure 2). A Read sequence begins with a Re-
quest_to_Receive (RTR) operation followed by the RTS/RA Write
Sequence pair. A PMR is set up with a Request-Memory_Region (RMR),
Memory Region_Available (MRA) exchange.

Transfers are segmented into Blocks, which are the unit of flow control and re-
transmission. A Block is enabled for transmission in a Write/Read sequence with
the Clear_to_Send operation (CTS), which fills in the Block number (B_num)
field in the ST header. The CTS operation also fills in the Bufx and Offset pa-
rameters, which are the ST virtual address of the beginning of the Block in the
receiver.

Blocks may be further segmented into Scheduled Transfer Units (STUs).
STUs are the basic unit of transmission, and each STU contains a Bufx and
Offset that tell the receiver where the STU should be placed. An STU is the same
as a Data operation in Figure 2. Note that the first STU in a Block contains the
same (Bufx, Offset) as specified in the CTS, but that subsequent STUs contain
different (Bufx, Offset) values. STUs also contain sequence numbers that allow
detection of missing and duplicate fragments.

A Bufx identifies an ST Buffer which corresponds to a physically contiguous
region of memory (a page) in the end host; the Offset is the offset within the
Buffer. ST defines the Bufx, Offset virtual address to achieve independence from
the architecture-specific virtual address size (i.e., 32-bit vs. 64-bit) and pagesize
parameters that are implicit in each host’s virtual addresses.

The st_map_addr() call results in a system call that pins down the region of
user memory specified by a virtual address and length. The OS informs the NI
of the mapping in terms of (Bufx, physical address) pairs and returns the list
of Bufx values to the ST API. There is a one-to-one mapping of Bufx values to
physical pages. Note that the Bufx values are not returned to the application
in the st_map_addr() call. The ST API handles all translations between virtual
addresses and (Bufx, Offset) values, a necessary conversion since the NI only
knowsraboutiBufx’syThestrategysofiSThis to place the responsibility for mapping
Buffers on the application/middleware. There is no attempt in the ST API to
dynamically determine which Buffers/should be mapped and which should not.
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The model used is that the application/middleware maps the Buffers it wants
to use and then sends/receives multiple messages to/from those Buffers.

Applications are able to control interrupts because ST supports silent delivery
of data (the NI does not forward any ST headers to the host), polling (ST headers
are forwarded to the host, but no interrupt is generated), and interrupt-driven
(ST header delivery plus an interrupt) interfaces. These options are specified
in the Flags field in the ST header. Because interrupts may be generated on a
per-STU basis, an application can arrange to receive interrupts on each STU, at
the end of each Block, at the end of the Transfer, or not at all. ST also includes
a checksum that enables its use in an internetworking environment.

Table 4. ST operations.

Request_Connection
Connection_Answer
Request_Disconnect
Disconnect_Answer
Disconnect_Complete

Request_To_Send
Request_Answer
Request_To_Receive
Request_Memory_Region
Memory_Region_Available
End

End_Ack

Get

FetchOP
FetchOP_Complete
Clear_To_Send

Request_State
Request_State_Response

| Data

2.3 Tiling

One of the major concerns in the design of ST is preventing network congestion
caused by bottlenecked receive processing. If the receiving host or NI is unable
to keep up with the incoming network load, it must either drop packets or exert
backpressure into the network, causing congestion on other independent VCs.
The general approach ST has taken to alleviate this potential problem is to push

i e data source. In ST, a message is only
ver is as ready as possible to forward
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Request_To_Send(T_len = 8KBLmaxBlock =8KB)

Request_Answer()

Clear_To_Send(B_num=0, Blocksize=8KB, Bufx=1, Offset=0)

4KB Data(B_num=0, STU_num=0, Bufx=1, Offset=0)

4KB Data(B_num=0, STU_num = 1, Bufx=2, Offset=0)

Request_State_Response( )

Fig. 2. An ST Write Sequence.

This goal is achieved in ST in two ways. First, the sender includes in each
STU the starting ST virtual address in the receiving host’s memory where the
STU is to be placed. Including this address relieves the receiver from reassembly
processing. Second, each STU is required not to cross a receiver’s Buffer (page)
boundary. This ensures that the receiver can move each STU into host memory
in one direct memory access (DMA) operation.

During Write and Read sequences the receiver includes in the CTS operation
the beginning address for the Block. In PMR sequences, the beginning address
for the PMR is sent in the MRA control operation that enables the PMR. Given
the starting address of the Block or PMR it is then the sender’s responsibility
to calculate the correct ST virtual address subject to the above two rules. We
call this process tiling the STUs into the receiver’s Buffers.

ST tiling is very useful when applications stripe messages across multiple
physical interfaces. Striping introduces yet another level of fragmentation of a
user message and presents significant reassembly problems for most protocols
since the fragments arrive at different interfaces. ST easily handles reassembly
because the source, by including the (Bufx, Offset) pair in each STU, effectively
handles all reassembly processing.

In Figure 2, the RTS is sent in response to the st_send() API call. The RTS
contains the length of the Transfer (8KB) and the preferred Block size (also
8KB). The RA operation is optional and is used in case the CTS cannot be
returned soon enough to avoid an RTS timeout. When the receiver has posted
the st_recv() API call and the API has matched the st_recv() with the RTS, it
sends out a CTS with the Block size (8KB) the Block number (B_num) and the
starting address of the Block (Bufx=1, Offset=0). The sender then sends the data
with two Data operations each of size 4KB. In this example, we have assumed
the Buffer (page) size is 4KB. The sender has segmented the Block into two
STUs according to the above tiling rules. The Request_State_Response (RSR) is
alsojoptionalandscangberrequestedpimpthesFlags field of each Data operation. The
RSR indicates the highest number Block which has been received and provides
a mechanism for the sender to retransmit lost or damaged Blocks.
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Fig. 3. One-way Put latency vs. message size.

2.4 Integration with the Upper Layer Protocol

ULPs typically place data correctly by passing ULP protocol headers along with
the application data. This presents another problem in achieving zero-copy on
the receive side because the ULP protocol headers may be mixed in with appli-
cation data. If the application requires the data to be presented contiguously in
its address space, a data copy will be required to remove the protocol headers.
To prevent this situation, there must be some way of removing the ST and ULP
protocol headers from the application data stream [12].

The ST headers are removed and placed in the Scheduled Header Queue, a
region in application (or middleware) memory specifically registered with the
NI for notification of ST operation completion. ULP headers may be removed
in two ways. First the ULP header can be included in the 32-byte optional
payload of the RTS control message that initiates a Write Transfer. Second, if
the ULP header is too large to fit in the optional payload, it can be sent via a
Put operation to the receiving message passing library’s buffers, and then the
Transfer can be initiated by the receiver as a Read Transfer.

3 Implementation Results

We have implemented ST on a Myrinet-connected cluster of 300MHz Pentium II
processors. Figure 3 shows the one-way latency for a Put operation vs. message
size. The latency for a zero-sized Put is just over 16 us. Figure 4 shows the
achieved bandwidth for a Write sequence for various message sizes. The peak
bandwidth of the Myrinet link is 1.2 Gbps and the theoretical bandwidth of the
PCI bus is just over 1 Gbps. The main limitation for Write bandwidth is we do
not yet pipeline the messages through the Myrinet card [14]. We expect to achieve
igni i e we implement these techniques.

rformance goal of ST is to minimize
bnly discuss the processing of a Write
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Fig. 4. Put bandwidth vs. message size.

sequence and show how this is done. The processing for Data operations that are
part of PMR sequences is slightly different, but has almost the same overhead.

In our current implementation, the processing of Request_to_Send (RTS) and
Clear_to_Send (CTS) operations is done in host software. When an application
calls st_send(), the ST API generates an RTS operation that includes the length
of the message and a 32-bit tag that is included in the 32-byte optional payload.
The RTS operation is passed through the sender’s NI to the receiver’s NI which
then forwards it to the receiving application’s Scheduled Header Queue (SHQ), a
region of memory in the receiving ST API. The receiving application makes the
st_receive() call, and the receiving ST API matches it with the RTS in the SHQ
(of course the RTS and st_receive() may occur in any order). The receiving ST
APT generates one or more CTS operations that each include the appropriate
(Bufx, Offset) and size of the Block.

When each CTS operation is sent through the receiving NI, it creates an
entry in its Mz Validation Table which it will later use to validate each Data
operation as it comes in from the sender. Figure 5 shows the entries in the Mx
table and the relevant entries in an incoming Data operation. The receiving NI
actually keeps three tables. The Mx table, the VC table, and the Bufx table. The
VC table keeps track of all active VCs and which application they are associated
with. Each entry in the VC table is of the form: (Local-Port, Local-Key, Remote-
Port, Remote-Key, pid) where pid is the process ID of the application. Our VC
table is a hash table indexed by the low order bits of the 32-bit Local-Key; since
the local OS chooses the key, good hashing performance is guaranteed. The Bufx
table keeps track of all Bufx mappings and which application they are associated
with. Each entry in the Bufx table is of the form: (Bufx, physical address, length,

e indexed by the low-order bits of the
o

hooses the Bufx values to guarantee
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When the CTS operation passes through the receiving NI, it does as much
work as it can to simplify the incoming Data operation processing. First, it
chooses a free Mx value which is used to index into the Mx table and inserts the
VC parameters (Local-Port, Remote-Port, Local-Key) into the table entry. It
looks up the VC parameters in the VC table and validates that the application
that sent the CTS owns that VC. The NI then inserts in the Mx entry the Seq-
id (Transfer ID) and B.num from the CTS and initializes the STU_num field
to 0. Based on the size of the Block, the NI creates a valid Bufx range for the
Data operations and validates, via a Bufx table lookup, that the application has
mapped these Bufx values. The Mx value is included in the CTS operation and
is returned to the receiver in every Data operation (in the B_id field) for that
Block.

Mx Validation Table
IMx Local-Port Remote-Port ~ Local-Key Seg-id B-num STU-num Bufx-range CTS-entry

Bufx
AddressTr:
Table

- 1 »~ check
check that

limit

Bufx is legal

index validate — .
limit base | 44— w physical

. address
‘Mx Local-Port Remote-Port ~ Local-Key Seq-id B-num STU-num  Bufx Offset ‘
Incoming Data operation

Fig. 5. NI validation of Data operations.

When a Data operation arrives at the receiving NI, the NI looks up the Mx
entry and compares the Data operation’s parameters with those in the Mx table.
All the validation fields shown in Figure 5 should match. The STU_num field
is treated differently because it changes with each Data operation. We assume
in-order delivery of STUs within a Block and check that all Data operations have
been received by incrementing STU_num after each Data operation is checked.
Finally, the Bufx in the Data operation is checked against the Bufx-range in the
Mx entry and the physical address of the Bufx is found from a lookup in the
Bufx table. The Offset and size of the STU operation are used to check whether
the STU fits within the Bufx, and the STU is DMAed into host memory. The
last STU of a Block contains a Last bit in the Flags field. When this STU is
received and validated, the NI deletes the Mx entry and sends a message to the
host SHQ that notifies the receiving ST API that the Block has been received
correctly.

To summarize, the receiving NI fully validates each Data operation before
sending it to its host’s memory, but does as much validation as it can before the
Data operation is received. When the Data message does arrive, the NI indexes
into the Mx table, validates seven fields, increments the STU_num, indexes into
thepBufxstablegandithenyvalidatesthe@ffset. At this point the NI has the correct
physical address in the host and can DMA the STU to the correct location in
application memory.
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4 Related Work

The SHRIMP [4] interface, developed at Princeton, allows an application to
map a local page into one remote page, with changes being automatically propa-
gated. It is therefore intended to be used in a shared memory environment, with
synchronization implemented at the application level.

The Osiris [7] project at the University of Arizona and the ATM Port Inter-
connect Controller (APIC) [6] project at Washington University at St. Louis are
OS bypass mechanisms over ATM and provide no end-to-end flow control. The
U-Net [9] project at Cornell was originally developed over ATM, but has now
been ported to Myrinet. U-net also provides no end-to-end flow control.

Berkeley Active Messages (AM) [8] is similar to ST in that it uses different
protocols for long and short messages, with the ability of the sender to place
long messages in a sender-specified memory location at the receiver. However,
AM does not provide end-to-end flow control and hence message progress is
coupled with ULP scheduling on the host processor.

The Hamlyn [5] project at HP Labs is the most similar to ST. Hamlyn never
sends a message unless there is a pinned application buffer at the receiver. The
sender is responsible for placing the address in the receiver in each sent message.
The Hamlyn paper describes the RATS library which sits on top of Hamlyn, but
the distinction between the two is not clear. Apparently RATS is responsible
for end-to-end flow control and for communicating the receiver address to the
sender. Hamlyn does not provide support for placing data into locations specified
by ULPs.

Illinois Fast Messages (FM) [13] is a portable message passing interface which
has been implemented on a number of platforms, including Myrinet. It is op-
timized for latency and uses PIO to move data to the NI from the sending
application. All messages are buffered on the receiving side, which requires a
copy into the application data structure. FM also provides end-to-end flow con-
trol and decouples message progress from host processor scheduling by having
the NI DMA data into the FM buffers on the host. The FM over Myrinet im-
plementation uses window-based flow control, where the receiving FM buffer
is partitioned between all senders; it is not clear to what size of system this
approach scales.

The original PM [14] protocol, whose name is apparently a pun on AM and
FM, is developed at RWCP in Japan. PM provides buffering which requires
copies into application data structures and flow control. The flow control al-
gorithm is more scalable than that of FM and guarantees in-order delivery.
However, it does permit lost messages due to buffer overflow (it is based on
go-back-N) and therefore requires retransmissions. Unfortunately, lost messages
are most likely to occur under heavy load, and these retransmissions only make
the load heavier. In a later paper [12], PM added the rendezvous protocol which
achieves zero-copy in essentially the same way as the ST Write protocol. The
senderpingPVipdoesmmotysegmentpitspgPDUs to prevent crossing of receiver page
boundaries. This segmentation is thus left to the receiving NI. PM also does not
provide Get, FetchOp, or Read sequences.
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The Virtual Interface Architecture (VIA) [15] project is a consortium between
Intel, Microsoft, and Compaq. VIA attempts to define an OS bypass mechanism,
but does not provide any method for interoperability because it does not define
a network protocol. Because the protocol has not be defined it is somewhat
difficult to predict what capabilities/features VIA will eventually support. The
VIA standard does indicate that end-to-end flow control will not be provided;
it states that the NI shall drop any packets for which there are not queued
receive buffers. The most complete section of the VIA document is the API,
called the Virtual Interface Primitive Library (VIPL). We believe that the VIPL
may become an industry standard API and plan to implement it over ST.

5 Summary and Future Work

In addition to providing low-latency, high-bandwidth message passing, ST at-
tempts to minimize the NI processing for Data operations as much as possible.
The goal is to avoid dropping data in the receiving NI or applying backpressure
into the network by allowing the NI to forward packets to the correct location in
the host as quickly as possible. This is achieved by pushing reassembly process-
ing back to the sender of the data and by doing as much validation as possible
at the receiver before the data arrives. This sender-based reassembly technique
also enables striping messages over multiple interfaces.

In the future, we plan to investigate the performance gains achieved by plac-
ing RTS/CTS processing on the NI. This processing is substantial compared
with incoming Data processing and presents a problem in that the NI may be
busy and unable to immediately service incoming Data operations. We plan to
investigate NI hardware capabilities such as priorities for the different types of
processing to deal with this problem.

One shortcoming of ST is that it does not support a zero-copy scatter (it does
support a zero-copy gather); this is due to the restriction that all intermediate
Blocks of a Transfer must be the same size (the first and last may be smaller). We
also plan to investigate mechanisms by which zero-copy scatter can be supported
without changing the nature of the protocol.
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Abstract. Implicitly parallel programming languages place the burden
of exploiting and managing parallelism upon the compiler and runtime
system, rather than on the programmer. This paper describes the design
of NIP, a runtime system for supporting implicit parallelism in languages
which combine both functional and object-oriented programming. NIP is
designed for scaleable distributed memory systems including networks of
workstations and custom parallel machines. The key components of NIP
are: a parallel task execution unit which includes an efficient method for
lazily creating parallel tasks from loop iterations; a distributed shared
memory system optimised for parallel object-oriented programs; and a
load balancing system for distributing work over the nodes of the parallel
system. The paper describes the requirements placed on the runtime
system by an implicitly parallel language and then details the design of
the components that comprise NIP, showing how the components meet
these requirements. Performance results for NIP running programs on a
network of workstations are presented and analysed.

1 Introduction

This paper describes work aimed at reducing the effort required to develop effi-
cient programs for parallel architectures, in particular those with scaleable dis-
tributed memory architectures. Many practitioners believe that the widely used
message passing methodology, currently embodied by PVM [1] and MPI [2], is
too complex and time-consuming [3].

The design of an alternative, an implicit parallel system in which it is the
compiler and runtime system rather than the programmer that are responsi-
ble for the creation and management of parallelism, has been investigated. The
runtime system, called NIP, has been designed and a prototype of it has been
implemented. NIP removes from the programmer the burdens of dividing a pro-
gram into parallel tasks, sharing work evenly across all the nodes, organising
communication between tasks, making the data available to tasks that require
ityrandssynchronising-tasksmThisspapersdescribes the design of the NIP system,
its prototype implementation, and gives a preliminary performance evaluation.

This paper makes the following contributions:

A. Sivasubramaniam, M. Lauria (Eds.): CANPC’99, LNCS 1602, pp. 122-136, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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e It investigates the issues and options in the design of systems for execut-
ing parallel functional plus object programs on distributed memory parallel
systems.

e It introduces an efficient method of lazily extracting parallel work from loops.

e It describes the design of an all-in-software, object-based DSM that uses an
optimised version of the entry consistency protocol.

The rest of the paper is organised as follows: Section 2 discusses high-level
programming languages which support implicit parallelism. The requirements
placed on NIP and an overview of its structure are introduced in Section 3.
In Section 4, the NIP execution model and the techniques it incorporates are
described in more detail, including: a mechanism for cheaply, lazily extracting
parallelism from loops, a lazy task execution mechanism, and dynamic load bal-
ancing. Next, the Distributed Shared Memory is presented (Section 5), including
a method for optimising performance by combining object locking with cache
coherency. Preliminary performance results for the NIP prototype implementa-
tion are described in section 6. In Section 7, related work is discussed. Finally,
conclusions from the work are drawn in Section 8.

2 Parallel Programming Languages

In the opinion of many software developers, functional programming languages
have a number of advantages over conventional, imperative languages including
their expressiveness, and their amenity to reasoning about semantics. However,
they also have further advantages for parallel computation. In particular, func-
tional programs contain far fewer constraints on execution order than do their
imperative counterparts. This is because all expressions in a functional program
are referentially transparent [4]. Therefore, the order of their execution cannot
affect the result of the execution, and this increases the scope for parallel execu-
tion. A number of parallel functional programming systems have been developed
over the last 20 years [5,6,7] to exploit these advantages.

Unfortunately, the very property that makes functional programs so well
matched to parallel systems-referential transparency-makes the programming of
certain important classes of computations unnatural, contorted and complex.
In particular, many computations (or parts thereof) are naturally expressed
through an object-oriented programming style in which objects encapsulate state
which may be updated through method calls. Method calls to objects may not
be referentially transparent, as identical calls can return different values, and
therefore these types of computations cannot be directly expressed in a functional
program.

As it was felt that functional programming was ideal for many types of com-
putations, and well suited to parallelism, it was not rejected entirely as the
preferredgprogrammingymethodologysforsNIP over object-orientation. The UFO
(United Functions and Objects) [ | programming language was adopted as it
brings together the functional and object programming styles in an elegant way.
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In UFO, a clear distinction is made between objects containing mutable state
and objects containing state that does not change after construction. The latter
can be used to write purely functional programs but the two types of objects can
also be freely combined within a program. In order to gain the benefits of parallel
functional programming described above, as much as possible of the computa-
tion should be expressed through purely functional objects. However, where it
is natural to do so, mutable objects can be constructed and manipulated.

The semantics of UFO state that the execution of function calls (methods
that cannot alter the state of an object) on the same object may be executed
in parallel. However, a procedure call (a method that can alter the state of an
object) should prevent other procedure or function calls from being executed on
the same object at the same time.

As a language that supports implicit parallelism, UFO does not provide the
means for a programmer to explicitly create parallel tasks. Instead, the syntax
and semantics of the language provide opportunities for the compiler and run-
time system to create and exploit parallel tasks: () In UFO, all calls (functions
and procedures) are strict on all their arguments—the arguments must be first
evaluated before the call can proceed. If there are two or more arguments, the
option of evaluating them in parallel is available. () Where there is a loop, tasks
can be created to execute independent iterations in parallel.

The NIP runtime system was designed and implemented to support the exe-
cution of programming languages like UFO.! However, the mechanisms and so-
lutions in NIP could have application across a wide range of parallel languages,
especially those based on functional or object-oriented programming.

3 NIP Design Overview

The goal of NIP is to execute compiled UFO programs exploiting parallelism
as efficiently as possible. This section gives an architectural overview of NIP. It
begins with a description of NIP running on an abstract parallel system and
then describes how it maps onto a distributed memory parallel system such as
a network of workstations.

3.1 The NIP Abstract Parallel System

The NIP runtime system can be considered as an abstract parallel system con-
sisting of a load balancer and an object memory (Fig. reffig.abstractmachine).
The unit of execution is a task and there is a limit to the number of tasks that
can be executing in parallel at a particular time. When the limit is reached, the
system is considered ‘busy’ as the parallelism it offers is fully exploited. The load
balancer is responsible for keeping the system at the ‘busy’ state by creating new
tasks when necessary, as is now described.

L A full description of the UFO language is outside the scope of this paper. The
interested reader is referred to [ ].
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The UFO programmer can develop an application for the NIP abstract par-
allel system without being concerned about how to exploit parallelism. The UFO
compiler will identify those parts of the computation that can be evaluated in
parallel. However, it will not create new tasks for them; instead, it will plant
code to create tasklets. Tasklets are small representations of pieces of computa-
tion that could be evaluated in parallel. Computationally, tasklets are cheaper
to create than tasks. When more work is required to keep the system busy, the
load balancer can use the information encapsulated in a tasklet in order to create
a new task.

NIP will automatically create a single task when the execution of the UFO
program starts. If the program is parallel, the task will produce tasklets which
the load balancer converts into tasks until the system is ‘busy.” The newly cre-
ated tasks may also themselves produce tasklets that are available to the load
balancer. If a tasklet has not been converted to a parallel task by the time the
result of its computation is required, the task that created the tasklet removes it
and executes the computation serially. The technique used by the load balancer
to dynamically create tasks only when necessary is called lazy task creation [9)]
and it is discussed in detail in Section 4.

3.2 Task States

A task may be in any of the four states shown in Figure 2. When a task is
created, it always starts in the ‘running’ state. However, there may be situations
when the task will have to become ‘suspended’ (e.g., a task may have to wait for
the result of a stolen tasklet). In such a case, if necessary, the load balancer will
try to create a new task in order to keep the system as close to the ‘busy’ state
as possible. If a task can exit the ‘suspended’ state and the parallel system is not
‘busy,’ the load balancer Wlll return the task to the ‘running’ state. Otherwise,
i hen the load balancer requires a task
any tasks in the ‘waiting’ state, before
so it moves the task to the ‘running’
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state. Finally, a task that completes its execution enters the ‘terminated’ state
and the load balancer destroys it.

3.3 Object Memory

Every task in the NIP abstract parallel system may access any object in the
object memory by executing a method on it. There is no need for tasks to
synchronise their method calls on objects as the object memory takes care of
synchronisation issues while trying to maximise the parallelism in memory op-
erations. The memory model follows the UFO semantics and allows any number
of tasks to call methods on an object at the same time if the methods do not
change the state of the object. However, the memory model guarantees that only
one task at a time is allowed to change the state of an object. The design and
implementation of the memory model is discussed in detail in Section 5.

3.4 NIP on Distributed Memory Systems

Every node in the distributed memory parallel system (e.g., all the workstations
in a network of workstations) runs an instance of a NIP Node. A NIP Node
consists of a collection of components, each one assigned specific duties. The
components of all the NIP Nodes in the system communicate with each other
by exchanging messages. The components are:

The Node Manager component directs the operations of the rest of the com-
ponents in a NIP Node. It routes the messages received by other NIP Nodes
to the appropriate component and it maintains NIP system and node spe-
cific information (e.g., list of NIP Nodes, number of processors available on
the current node, etc.).

The Load Balancer is responsible for maintaining information about the
tasks running on the current NIP Node. It uses the information to make
decisions on whether or not more tasks are required on the NIP Node.

The DSM Manager is the component responsible for managing the local
memory of the NIP Node.

e The Communicator is a wrapper around the underlying communication
layer.

All the NIP Nodes in the system collaborate to execute a program. On every
NIP Node there is a limit on the number of tasks that may be executed in parallel
but the number may not be the same for all NIP Nodes. Usually, the limit is
equal to the I scessorspavailable on a node.”

iprocessor nodes.
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4 The NIP Execution Model

On every NIP Node, the Load Balancer component deals with the creation and
execution of tasks. The set of Load Balancer components in the parallel system
co-operate with each other in order to try to ensure that nodes always have tasks
to execute. In this section, a novel variant of the lazy task creation [9] technique
is introduced, the task execution mechanism is described, and the dynamic load
balancing scheme used by NIP is presented.

4.1 Lazy Task Creation

Lazy task creation attempts to reduce the cost of creating tasks for concurrent
execution. In [9], a technique is described where every task maintains a queue of
continuations. A continuation represents a lazy future call, a piece of computation
that can be executed in parallel. As computational resources become available, a
continuation is stolen and a new task is created. When the task requires the result
from a continuation, it removes the continuation from the queue and executes
it inline. The task creating a continuation is called producer while a processor
stealing a continuation is called consumer. The continuation queue is guarded
by a lock in order to avoid simultaneous access by the producer and consumer.
Mohr et al. show that it is beneficial to use continuations in order to represent
potentially parallel pieces of computation that may be converted to tasks at
runtime rather than creating tasks for all of them.

An important issue for efficient parallel computation is the cost of the inline
execution of the continuation, which should not be much greater than the cost
of executing the same computation in a purely serial environment. Therefore, in
a parallel system using a lazy task creation scheme, it is very important that the
cost of creating continuations and executing them inline is minimised.

Analysis of the existing lazy task creation technique identified three causes
of inefliciency:

1. The continuation queue is maintained on a heap and, therefore, the creation
and destruction of continuations are expensive operations because memory
must be allocated/freed on a heap.

2. For iterative computations where each iteration can be executed in parallel,
the number of continuations created equals the number of iterations. As
the creation of each continuation has a finite cost, this is a large overhead.
For example, if a function is mapped onto an N—element vector, then N
continuations will be created.

3. On a shared-memory multiprocessor, a processor must access the continu-
ation queue in order to find a task to execute. When accessing the queue,
a_lock must _be acquired, which introduces significant overhead. The cost of
these lock operations has been stated as the main performance disadvantage
of lazy task creation in [ ].
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class ParallelMap

{

public:
ParallelMap (Vector, Function);
Task steallteration();

Private:
int stealIndex() ;
Vector vector;

Function function;
int index = 0;

) (a)

// create task
Task ParallelMap::steallteration()
{
tmpi = stealIndex();
if (tmpi == -1)
return nothing
else
return newTask (vector,
function,
tmpi) ;
} ©

// execute loop inline
ParallelMap (Vector v,
{
vector = v;
function = £;
// Add tasklet to tasklet queue
activate();
while (true)

{

Function f)

tmpi = stealIndex();

if (tmpi == -1)
break;

else

vector [tmpi] =
f(vector[tmpi]);
}
// Wait for the results of any exported tasks
wait () ;

) (b)

int ParallelMap::stealIndex ()
{

startCriticalSection() ;

if (index == vector.length())
// No work left. Remove tasklet from queue
deactivate() ;
stolen = -1;
else
stolen = index;
index++;

endCriticalSection() ;
return stolen;

} @

map (Function f, Vector v)

{
for int 1 = 1 to v.length()
vIii] = £(vI[il);
} (e)

Fig. 3. Pseudo-code for an iterative Tasklet

4.2 Lazy Task Creation in NIP

In NIP, a variation of the lazy task creation technique is used. The NIP Lazy
Task Creation scheme has a simpler and more portable design than the original
technique. In NIP Lazy Task Creation, tasklets are used as the representations
of the potentially parallel parts of the computation. The new technique reduces
the effects of the sources of inefficiency identified in the previous section:

1. Tasklets are allocated in the stack frame of the task that creates them but,
unlike in previous schemes, the tasklet queue is not allocated on a heap.
Instead, the tasklets are directly linked and the Load Balancer only maintains
pointers to the first and the last tasklet in the queue. This reduces the
memory allocation/deallocation costs. When new tasklets are created the
links must still be updated but this is a relatively small cost.

2. Only one tasklet is created for a complete iterative computation (e.g., a
for-loop) rather than one for each iteration. Once the tasklet is created,
the iterations can be executed serially by the task that created the tasklet,
while one or more iterations can be stolen by the Load Balancer for exe-

ider a program in which a function f is

or. In pseudo-code, a serial version of
Figure 3e. In the NIP version (again
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in pseudo-code), an instance of the ParallelMap class (Figure 3a) is con-
structed. This has as variables the function, the vector, and an index variable
which, as will be seen, is shared between the inline code and the task-stealing
code. The class constructor initialises the tasklet, publicises it to the Load
Balancer by adding it to the local tasklet queue (activate()), and then
executes the loop inline (Figure 3b). Once the loop is completed the tasklet
is removed from the local queue and waits for the results of any stolen it-
erations to be returned. The Load Balancer can steal iterations by calling
the stealIteration() method (Figure 3c); a stolen iteration is turned into
a task which can be exported for parallel execution. The inline execution
and Load Balancer can never execute the same iteration because the critical
section in the stealIndex () method (Figure 3d) guarantees unique manipu-
lation of the _index variable. As an optimisation, to increase the granularity
of tasks, more than one iteration can be stolen at a time by the Load Bal-
ancer. These iterative tasklets are important for reducing costs in a language
like UFO which directly supports iteration. However, in languages which do
not directly support iteration and offer solely recursion (e.g., most functional
languages), techniques for transforming recursion into iteration [11] can still
allow this optimisation to be exploited.

3. The tasklet queue is guarded by a lock but a task only needs to acquire this
lock when it adds/removes a tasklet to/from the queue. Each tasklet retains
a private lock, which must be acquired by the task when it removes part
of the computation in order to execute it inline. The Load Balancer needs
to acquire both locks when it creates a new task from a tasklet. First, it
needs to locate a tasklet to use, so it must acquire the queue’s lock. Then,
it needs to acquire the lock—private to the tasklet—in order to steal part
of the computation. This 2-level locking scheme allows the Load Balancer
to create a new task without blocking the rest of the tasks from executing
their tasklets inline. Furthermore, on a multiprocessor node, the tasks do
not block each other when accessing their tasklets.

4. The Load Balancer is designed so that when it is active, it cannot be inter-
rupted by a task. Therefore, the lock operations can be optimised by using
a boolean variable instead of a mutex as the tasklet’s private lock, providing
the target platform is composed from uniprocessor workstations where the
memory operation of setting the value of a boolean variable is atomic.

5. Finally, tasklets can be designed to be reusable. So, once a tasklet is created
it may be used many times in different parts of the computation.

The NIP lazy task creation technique has been implemented in C++ for
portability. This differs from earlier schemes (e.g., [9,12]) which require a cus-
tomised compiler.

4.3 Task Execution

As mentioned in Section 3, a task is the unit of execution in the NIP abstract
parallel system. However, in most operating systems, the unit of execution is
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either a process or a thread. In view of the lower overheads associated with the
creation, switching, and termination of threads on the distributed systems that
NIP targets, threads were preferred over processes as the execution medium for
tasks. The Load Balancer component is responsible for the creation, suspension,
and termination of threads.

4.4 Dynamic Load Balancing

The set of Load Balancer components in the parallel system co-operate with
each other in order to try to ensure that nodes always have tasks to execute.
Every Load Balancer implements a simple algorithm to keep its local NIP Node
busy with tasks. The algorithm utilises information on tasks and tasklets that
the Load Balancer maintains for the NIP Node.

When the number of tasklets on a node changes from zero to one, the Load
Balancer broadcasts a notification message to the rest of the NIP Nodes. When
the last tasklet is removed from a node a notification message is also broadcast.
Every Load Balancer component maintains a tasklet availability vector with a
boolean entry for each of the other NIP Nodes in the system. The boolean entry
indicates whether the corresponding NIP Node has any tasklets or not, and it
is updated upon the receipt of a notification messages. When a NIP Node runs
out of tasklets and there are no tasks in the ‘waiting’ state, the Load Balancer
checks the tasklet availability vector and sends a request for tasks to a node with
a non-empty tasklet queue.

5 The NIP Distributed Shared Memory

The target architecture for NIP is a distributed memory parallel machine that
does not directly offer shared memory (e.g., a network of workstations). A sys-
tems providing global access to objects was required for NIP as a task can be
executed on any node and it may require access to objects created on other
nodes (Section 3).

It would have been possible to utilise a conventional, general, all-in-software
Distributed Shared Memory (DSM) system to implement the memory model
required for NIP.? However, a NIP-specific DSM system, the NIPDSM, can sup-
port the semantics of the NIP computational model more efficiently than conven-
tional DSM systems. The NIP computational model imposes certain restrictions
on the way objects can be accessed (Section 3) and NIPDSM exploits these
restrictions—as is described in the rest of this section—in a way that cannot be
achieved by a conventional DSM system.

In this section, an architectural overview of the NIPDSM is presented and
the motivation behind the design decisions is explained. The memory consistency
protocol used in NIPDSM and the way caching is used to improve performance
are described. The aspects of the NIPDSM system that exploit the NIP object
access semantics are highlighted throughout the section.

3 For a good discussion of DSM and a variety of existing systems, the reader is referred
to [ ].
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5.1 NIPDSM Architecture

Most conventional software-based DSM systems provide a single address space
view to parallel applications (e.g., [14,15]). In this approach, a parallel applica-
tion running on a distributed memory machine consists of a collection of threads
or processes that use read and write operations on virtual addresses-in the same
manner as a serial program.

This memory model is not ideal for parallelism as interleaving of read and
write operations are allowed without any restrictions, although programmers can
serialise memory operations using memory lock operations. The DSM provides
the memory lock operations but it is still the responsibility of the parallel ap-
plication programmers to use them correctly in order to protect shared memory
regions from simultaneous access problems. Failure to do this often results in
software errors which are very hard to discover.

NIPDSM investigates an alternative approach, using the semantics of the
object memory of the NIP abstract system, where it is the memory that deals
with serialisation in memory access rather than the application. The NIPDSM
provides an object view of the distributed memory; the unit of sharing is the
object. The ways in which objects can be accessed by the parallel application are
restricted (Section 3). There are a few similarities between the NIPDSM object
space, the tuple space of Linda [16], and the data-structured DSM systems like
Emerald and Clouds [17,18] but there are significant differences as well, as will
be described.

The NIPDSM is organised as a collection of objects which are shared amongst
the participating NIP nodes. A parallel application cannot directly access mem-
ory locations but instead it calls methods objects. Depending on whether or not
a method updates the state of the object, it is characterised as a read method (a
function in UFO) or as a write method (a procedure in UFO). An object with
only read methods is considered to be immutable while an object with at least
one write method is considered to be mutable. NIPDSM implements the UFO
semantics as an object can have multiple concurrent readers but only one writer.

Synchronisation of simultaneous accesses to a mutable object is achieved
automatically via the use of a lock which is private to that object. Therefore,
there is no need for the application to deal with synchronisation. Nevertheless,
an interface to the private lock of each object is available in order to support
optimisations by the UFO compiler, when it is more efficient to wrap contiguous
method calls on the same object within a single pair of lock/unlock operations.

5.2 Object Replication and Consistency Model

Objects in NIPDSM can be cached in multiple nodes; consequently, provision
must be made for their state to be kept consistent across the nodes. Many con-
sistency models have been proposed in the literature [15,19,20] and are used in
conventionalDSMysystemsyThechoicerofthe consistency model for the NIPDSM
was important not only because of the performance implications but also be-
cause the semantics of the NIP computational model have to be met. It was
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decided that the entry consistency model [15] was close to the requirements of
the NIPDSM and a novel variation of the original model optimised for NIP was
designed and implemented.

Entry consistency is a relaxed model—it defers memory updates to/from
replicated regions until they are necessary. Like most relaxed models, entry con-
sistency requires that applications follow certain rules in the way in which they
access the shared memory in order to guarantee strict consistency semantics in
the way the memory operates—a read memory operation always returns the most
recent value. An application must associate any shared variables with synchro-
nisation objects, which are used to define critical sections. The shared variables
must only be accessed within these critical sections. The burden of defining
the critical sections and associating the shared variables with synchronisation
objects falls to the application programmer [21].

The semantics of the NIP computational model allow us to simplify the
model as there is no need for critical sections at the application level. Every
mutable object has a lock which is used whenever a method is applied to the ob-
ject. This lock provides the synchronisation required when accessing the object’s
state. Additionally, as will be described, the same lock is used for consistency-
related operations ensuring that the object’s state is always kept up-to-date. In
contrast, in most conventional DSM designs, memory consistency related opera-
tions require the manipulation of separate locks; one used by consistency-related
operations and one for synchronisation-related operations.

5.3 Managing Consistency

In this section, the NIPDSM approach to maintaining the consistency of the
state of the objects is described. An object in the NIPDSM is always assigned
to a single Manager Node. The Manager Node maintains information about the
object and is responsible for satisfying cache requests from other NIP Nodes.
When an object is cached on a node, the node becomes either a Read Prozxy
Node or a Write Prozy Node for the object. The following rules apply:

e The Manager Node of an object allows the execution of tasks local to that
NIP Node which call write and/or read methods on the object when there
are no proxies for that object.

e The Manager Node allows the execution of read methods on an object if
Read Proxies exist for that object.

e A Write Proxy allows the execution of local tasks that call write and/or read
methods on the object.

e A Read Proxy allows the execution of local threads that call only read meth-
ods on the object.

e A node can be a Manager Node, a Read or Write Proxy for any number
of objects but can never be more than one of these at the same time for a
particular object.

e An object in the NIPDSM always has one Manager Node and it may have
zero or one Write Proxy, or zero or many Read Proxies at any given time.
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5.4 Implementation

The Manager Node remains the same throughout an object’s lifetime. This is
in contrast with Bershad’s implementation of the entry consistency model [21]
where the Manager Node—in NIPDSM terms—is the node with write permis-
sion to the object and a distributed directory scheme is used to keep track of
the Manager Node. In NIPDSM, the overhead associated with maintaining the
distributed directory is avoided in order to simplify the implementation, while
optimisations are introduced to reduce the number of messages exchanged.

Every object is assigned a unique object ID, the NIPDSM Pointer, when it
is created. The NIPDSM Pointer provides access to an object’s methods, acting
like a virtual memory pointer, and it is used by the NIPDSM system in all
locking and caching operations.

Unlike most conventional DSM systems, NIPDSM does not depend on the
operating system to detect memory accesses and trap cache misses. This is pos-
sible because an object can only be accessed via method calls and therefore only
via the use of a NIPDSM Pointer. The advantages of this approach are:

e The NIPDSM system is portable, as no operating system specific calls are
required.

e Conventional DSM systems use the underlying operating system’s page fault
mechanism in their implementation. The page fault mechanism usually in-
volves traps to the kernel and the invocation of user-defined handlers. In con-
trast, NIPDSM uses the lock operations required by the consistency protocol
to detect object accesses. These lock operations would have been required
even if NIPDSM were to use the underlying operating system’s page-fault
mechanism.

A compiler can further optimise an object’s access time. Once a method is
called on an object and the lock is acquired, the local virtual memory address
of the object is returned to the calling thread. As the object is locked, it is safe
to use the virtual memory address to access the object instead of the NIPDSM
Pointer.

6 Performance Results

In this section, preliminary performance results from the execution of the pro-
totype implementation of NIP are presented. Eight PentiumIl 233MHz work-
stations with 64MB of memory, interconnected by a 100Mbps Fast Ethernet
network were used as the test-bed. Each of the workstations was running an
instance of the Linux operating system (RedHat 5.1, kernel 2.0.35).

The test is the implementation of the UFO example shown in Figure 3e)
wherepapfunctionyfrisimappedromptherelements of a vector both sequentially, and
in parallel using NIP. The sequential program was implemented in standard C
while the parallel version was implemented in C++ using the implementation
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Tasklet creation and destruction | 1.364usecs
Overhead per iteration | 0.16usecs

Table 1. Tasklet-related costs.

Function granularity(msecs)

Vector Size Single iteration stolen Group of iterations stolen

0.03| 0.3 | 1.5 |3.02|6.04|60.4(/0.03| 0.3 | 1.5 |3.02|6.04|60.4
100|0.39]0.95(2.01(3.29(5.74(6.73(0.96(1.36(3.11|4.25|5.26(6.23
200(0.74|1.07|1.99|3.57|5.60(|6.50(/0.59(1.98(4.64|5.09|6.14|6.24
500(0.81(1.11|2.20|3.76|6.65|7.57(/1.00(3.10|6.92|7.32|7.50|7.57

1000(0.90(1.17|2.38|3.83|6.64(7.18((1.34(4.45|7.31|7.21|7.52|7.57

Table 2. Speedup on 8 nodes.

of the ParallelMap tasklet class (Figure 3 in Section 4.2). The egcs 1.1b com-
piler was used for the compilation of the two versions of the program. Finally,
the implementation of the TCP/IP protocol provided by Linux was used for
inter-node communication rather than an optimised, low-cost communication
subsystem like U-Net [22].

The costs of using the tasklet were measured by comparing the timing results
from the execution of the sequential and NIP versions of the program. The
overhead incurred because of the creation and destruction of the tasklet and the
cost per iteration of using the tasklet are presented in Table 1.

The ParallelMap tasklet only allowed one iteration to be stolen at a time.
An optimised version of the tasklet was also tested that allowed a group of
iterations to be stolen at a time and therefore increased the granularity of the
tasks created. The number of iterations stolen was calculated at runtime as
n = vectorsize | (number of nodes x 2). Table 2 presents the speedups achieved
over the sequential version of the program when using different vector sizes and
different granularities of the mapped function on 8 workstations. The results
show that NIP performs reasonably well even for relatively small granularities.

7 Related Work

Lazy Task Creation and Distributed Shared Memory have been and still are
very active areas of research. In this section, the relation of NIP to particularly
relevant previous work is discussed.

Mohr et al. [9] describe Lazy Task Creation as a technique for increasing the
granularity of parallel programs by creating new tasks only when computational
resources become available. Lazy Task Creation suffers from overheads caused
bysthepusepoisthesheappandybysglobaldock operations. The NIP Lazy Task Cre-
ation scheme only uses the stack, introduces a locking scheme that permits more
parallelism (Section 4.2), and creates only one tasklet for iterative computations.
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Goldstein et al. [12,23] produced a compiler-supported technique, which they
call Lazy Threads, that allows threads to be executed like sequential function calls
when computational resources are not available. Unlike NIP, the technique re-
quires a new stack manipulation scheme, a customised compiler, shared memory,
and it uses a polling scheme to process the queue of available work.

In the area of DSM systems, Bershad et al. in [23] first introduced the En-
try Consistency model and used it to implement the Midway DSM system. In
Midway, an explicit association of data with synchronisation variables has to
be made. In NIPDSM, every object has its own private lock allowing full inter-
object parallelism to be exploited, and the locking operations are called implicitly
when objects are accesed. Unlike NIPDSM, Midway does not allow overlapping
of communication and computation.

Other page-based or object-based DSM systems cannot directly support the
semantics imposed by the NIP computational model. For example, page-based
DSM systems cannot directly support object consistency while existing object-
based DSM systems do not provide entry consistency or the overlapping of com-
munication and computation.

8 Conclusions and Further Work

In this paper, the design of the NIP system for executing parallel UFO pro-
grams has been described. UFO combines elements of both object-oriented and
functional programming, marrying the implicit parallelism of functional lan-
guages with the encapsulation of state manipulation offered by object-oriented
languages. Whilst this paper focuses on UFO as the high level language, the
issues, design and implementation are applicable to other similar parallel lan-
guages, and to any others which offer features found within UFO (e.g., iteration,
encapsulation of state within objects).

Work on NIP is progressing in a number of directions. First, the behaviour
of a wider range of parallel programs is being analysed. Also, a set of advanced
caching features are being designed to improve the efficiency of the NIPDSM
by copying and caching groups of objects rather than single objects. Finally, we
are investigating the mapping of other high level languages onto NIP; the initial
focus is on extracting implicit parallelism from Java programs.
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The Aleph Toolkit: Support for Scalable
Distributed Shared Objects
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Abstract. The shared object model is an appealing programming ab-
straction for distributed computing. By hiding the details of the network
and data distribution, it allows the programmer to focus on higher-level
concerns, and makes the program structure robust in the presence of
changes in distribution patterns or environment. Nevertheless, it is not
at all clear that the distributed shared object model can be adapted to
the needs of modern large-scale distributed applications.

The Aleph Toolkit is a collection of Java packages intended to support
the construction of distributed shared objects in a way that addresses
networking-related performance issues. This paper describes the design
and rationale for the Aleph API, as well as our preliminary experience
implementing a distributed shared object system in Java.

1 Introduction

The shared-object model is an attractive approach to structuring distributed
applications. Existing shared-object systems, however, often lack the flexibility to
meet the demands of large-scale networked applications. We believe that a toolkit
approach is the most promising way to achieve an adequate level of flexibility and
application-specific customization. Instead of providing a monolithic collection
of services, a toolkit encapsulates individual services behind interfaces, allowing
applications to select (or develop) customized implementations of each service.

The Aleph Toolkit is a collection of Java packages intended to support the
construction of customized distributed shared objects. Aleph supports both
“push-based” and “pull-based” communication, and “data-shipping” and
“control-shipping” patterns. The major components of the Aleph run-time sys-
tem are defined by Java interfaces, allowing programmers to substitute cus-
tomized implementations that adapt to the needs of applications, or exploit
specialized hardware.

This paper describes the overall design and rationale for the Aleph API and
internals, as well as our early experience implementing a distributed shared ob-
ject system in Java. The interesting aspects of this system include the modular
decomposition, and the provision of services (such as ordered anonymous multi-
cast) that differ from those provided by similar systems.
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2 Programming Models

We are interested in scalable distributed applications that require rapid access
to complex objects. Examples of such applications include electronic commerce
and trading systems, traffic information systems, and interactive communication
systems such as conferencing or whiteboards. Such applications often have a
critical need to control the ways in which data objects are moved through the
system. In an ideal world, an object’s clients would have instant access to the
object’s current state. Often, however, it is not possible to provide clients with
a completely accurate view of the object, thus the application must allow the
client’s views of the object to diverge from the ideal view in a controlled way.

We call this class of issues the data fidelity problem. The conventional way to
implement distributed shared objects, in which cached copies are moved among
clients on demand, is clearly inadequate to these challenges. Instead, application
designers must determine an application-specific notion of fidelity: how closely
clients’ views must track the object’s actual state.

A simple stock trading example illustrates many of these issues. Each stock’s
price is represented as a distributed quote object, where each client accesses the
object through a proxy. If there is a single server, the number of clients is small,
and each client is interested in a different stock, then quotes could be kept up-to-
date by having proxies periodically poll the server (a “pull-based” approach). If
the number of clients is large, or the clients have similar interests, then it is more
sensible for the server to multicast changes to quotes (a “push-based” approach).
If certain clients want to be notified when certain stocks change by specified per-
centages, then it makes sense for the server to unicast updates to those clients’
proxies. Even more elaborate schemes could be imagined: updates may be dis-
tributed among a hierarchy of caching servers, clients could be organized into
multiple multicast groups depending on their interests, and so on.

Programming models based on explicit message passing (such as PVM [12]
or MPI [11]) are widely used for scientific and engineering applications. Al-
though message-passing has proved useful for relatively small-scale and regularly-
structured applications, we believe it is poorly suited to structuring large-scale
or long-lived applications. The principal limitation of the message-passing model
is that it burdens the programmer with responsibility for all interprocessor com-
munication, synchronization and caching. This burden is particularly cumber-
some for large-scale applications or those with irregular or dynamically changing
communication structures.

The work described here has been influenced by several kinds of distrib-
uted shared object systems. Distributed shared memory (DSM) systems, whether
page-based or object-based, implement a “data-shipping” model, in which the
bits representing the object are moved among client caches on demand. A variety
of techniques have been proposed for maintaining consistency among the cached
copies [1]. Many existing DSM systems provide only limited flezibility: although
mostyD SMysystemspsupportpapfixedgnumber of cache coherence protocols, the
stock quote example given above illustrates the need to define and implement
application-specific notions of consistency that cannot be anticipated by the de-
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signers of the DSM system. A second limitation is that the data-shipping model
is simply not appropriate for some kinds of shared objects, including objects
that represent caches or encapsulate services, or objects whose contents are sub-
ject to security constraints. For example, consider a system that allows users to
open chat windows on one another’s displays. One might like to treat another
user’s display as an object providing methods to open and close chat windows,
but such a display object could not be treated simply as a data structure to be
paged across the network. Similar considerations apply to the system’s authen-
tication server, which encompasses sensitive information such as passwords.

By contrast, remote method invocation (RMI) systems [19,21] implement a
“control-shipping” model for objects. Calls to an object’s methods are trans-
formed, via a stub, to messages forwarded to a remote site that encapsulates
the object’s state. The RMI approach works well for objects that encapsulate
services or resources, but additional techniques are needed to deal with objects
for which flexible caching policies are important for performance.

Each of these choices, push vs. pull, or data-shipping vs. control-shipping,
is sensible under certain circumstances. The range of choices suggests that a
toolkit approach is an attractive way to allow object implementers to “mix-and-
match” module implementations to meet application-specific requirements and
to track changes in the underlying hardware, reducing or eliminating the need
to restructure the application each time.

3 Aleph API

The Aleph toolkit is a collection of Java packages (JDK 1.1) that provides
platform-independent support for distributed shared objects. Our emphasis is
not merely on portability, i.e., adapting code written for one platform to an-
other, but on interoperability: the ability to run computations that span multiple
heterogeneous platforms.

A distributed program runs on a number of logical processors, called Process-
ing Elements (PEs). Each PE is a Java Virtual Machine, with its own address
space. Each PE is created as part of a PEgroup (aleph.PEGroup)! When the
PE group is started, the Aleph run-time system supervises a handshake proto-
col ensuring that each PE is initialized knowing the address of every other PE
within its group. Any PE in a PE group can shut down the entire group. It is
also possible to create long-lived PEs that do not belong to any group. Such
long-lived PEs are useful for long-lived services and applications.

The next section gives an overview of the Aleph communication primitives.
We focus on the meaning of these primitives, and on how their use affects pro-
gram structure.

L A PE group is not a process group in the sense used by Isis [7] and related systems.
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public class RegisteredObject {

static Hashtable registry; // register objects here

static PE[] peers; // all PEs

public RegisteredObject(String label) { // constructor
RegisterMessage m = new RegisterMessage(label, this); // construct

message
for (int i = 0; i < peers.length; i++) // send it out
m.send(peers[i]);

}

// Message defined by static inner class
private static class RegisterMessage extends aleph.Message {
String label; RegisteredObject object; // new data fields
public RegisterMessage(String label, // constructor
RegisteredObject object) {
this.label = label; this.object = object;

}

public void run() { // actually register the object
registry.put(label, object);

}

Fig. 1. Illustrating use of aleph.Message

3.1 Message Passing

Direct message-passing is the simplest form of communication between PEs. It is
the basis for point-to-point (unicast) communication, and is used extensively in
the Aleph internals. Messages in Aleph are modeled loosely on active messages
[24]. Each message encompasses a method and its arguments, and that method is
called when the message is received. We define an abstract class aleph.Message
that implements Serializable and Runnable. A new message class is defined by
extending aleph.Message, including a void run() method to be called by the
receiver. When a message is received, its run method is executed to completion.
Messages sent from one PE to another are received in FIFO order, and their run
methods are executed in that order.

We say that a message is blocking if its run method could be blocked for an
unpredictable duration. We emphasize that a message is not necessarily block-
ing just because it calls a synchronized method, because many synchronized
methods impose only a bounded delay. For example, if P sends () a message
requestlng excluswe access to an object, that message is blocking because an
ly to release the object. When @) even-
at object to P, the reply would not be
method calls a synchronized method
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to place the object in a shared hash table, because that insertion cannot be
blocked for an arbitrary duration.

Blocking messages belong to the class aleph.AsynchMessage, a subclass of
(non-blocking) aleph.Message. When a PE receives a blocking message, it al-
locates a thread to execute its run method, and the PE immediately proceeds
to receive the next message. When a PE receives a non-blocking message, it
transfers the message to a dedicated thread that that executes successive mes-
sages’ run methods to completion. This distinction between blocking and non-
blocking messages yields a modest performance benefit by reducing reducing
thread-switching overhead (See Figure 3). More importantly, however, it yields
the semantic benefit of ensuring that non-blocking run methods are executed in
FIFO order, a guarantee that can substantially simplify protocol design. (Since
blocking messages’ run methods are executed asynchronously in independent
threads, they may effectively be executed out of order).

As a language construct, Messages provide a clean way for a class residing at
one PE to communicate with instances of the same class at other PEs. Figure 1
shows a simple RegisteredObject class in which an object created at one PE is
registered in a static table at all PEs. The message class is defined as a a static
inner class, so its run method has direct access to class (static) variables, but
the message class itself is not visible outside the class, and does not clutter up
the class’s specification.

3.2 Events

The aleph.Event class supports push-based communication. An event object is
a kind of multicast channel. One PE can notify others when an event occurs by
calling that Event object’s signal method (with an optional argument). If a PE
wants to be notified when an event has been signaled, it registers a Listener ob-
ject with that event. Just as in the Abstract Window Toolkit (AWT), the listener
is a dummy object that provides a void actionPerformed(Object object)
method that is called (with the optional argument) when the event is signaled.
If a PE loses interest in the event, it can unregister its listener.

Events provide a form of reliable anonymous multicast. The multicast is
reliable because all PEs registered with an event will eventually be notified when
the event is signaled. It is anonymous because a PE signaling an event need
not know the identities of the other PEs listening to that event. We believe
that anonymity is a precondition for scalability: registering or unregistering a
listener should be a light-weight operation, analogous to joining or leaving an IP
multicast group.

Events can be ordered or unordered. If an event is ordered, notifications
are delivered to listeners in the same order. We use unordered events in barrier
objects (many senders, many listeners), join objects (many senders, one listener).
@rderedyeventsparepintendedsforgpush=based proxy or cache coherence protocols,
in which PEs install incremental modifications to remote object proxies. Figure
A simplified barrier using events appears in Figure 2.
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public class Barrier implements Serializable {

private int count; // number of outstanding calls
private Event event; // used for communication
/%%

* Construct a barrier, one thread per PE.
*%/

public Barrier() {
this(PE.numPEs () ;

}

/%%
* Wait for all threads to reach this barrier.
*%/
public synchronized void waitFor() {
event.setListener(new Listener() { // anonymous class
public void actionPerformed(Object object){
synchronized (Barrier.this) {
count -= 1;
Barrier.this.notifyAl1();
}
j3ON
event.signal();
while (count > 0) {
try { wait(); } catch (InterruptedException e) {};
}
}

Fig. 2. Illustrating use of aleph.Event

There are two kinds of signals: normal, and flush. When a PE registers a
listener with an event object, it is notified of all signals back to the most recent
flush. The distinction between normal and flush signals is intended to allow the
application to inform the Event implementation when it is safe to discard infor-
mation about past notifications. For example, a PE might multicast incremental
changes to an object using normal signals, but then periodically multicast the
object’s complete state using a flush.

Our notion of ordered multicast can be contrasted to that used in systems
employing virtual synchrony [3,7,23]. In those systems, PEs belong to a process
group whose membership is common knowledge among the group members. Each
time a PE enters or leaves the group, the members undertake a kind of global
consensus protocol to ensure that all current participants agree on the group
membership. By contrast, Aleph Events are intended to permit PEs to enter or
leave the multicast group with a minimum of disruption.

ol Ll Zyl_i}sl
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3.3 Remote Threads and Functions

A thread running within one PE can invoke a thread within another PE, and
optionally wait for that thread to finish. For example, in the classic “hello world”
application, the remote thread that will execute at each PE is defined as:

static class HelloThread
extends aleph.RemoteThread {
public void run() {
System.out.println("Hello World from "
+ PE.thisPE());
¥
¥

Remote threads extend the abstract class RemoteThread. Like regular Java
threads, the class must provide a public void run() method to be called when
the thread is started.

As usual for Java programs, the top-level class must include a method with
signature

public static void main(String[] args)

to be called when program starts. The main method creates an instance of a
remote thread object.

HelloThread thread = new HelloThread();

As with regular threads, a remote thread does not execute until it is explicitly
started. The main method then creates a Join object for synchronization, enu-
merates all PEs, starts an instance of HelloThread at each PE?, and waits until
all remote threads have completed.

Join join = new Join();
for (Enumeration e = PE.allPEs();
e.hasMoreElements() ;)
thread.start ((PE) e.nextElement(), join);
join.waitFor();

There is also a RemoteFunction class that allows remote threads to return values.

4 Toolkit Implementation

Programming in Java to standard APIs supports portability and interoperabil-
ity among different operating systems. Even so, there is another important di-
mension to portability that remains a challenge: effectively and economically

ly starts a copy of the thread object, a
ed more than once.
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exploiting emerging hardware platforms for network switching, memory inter-
connection, and clustered computing. A sensible way to isolate applications from
such shifts in hardware foundations is to identify the modules most likely to be
affected by advances in technology, and to isolate each one behind a Java in-
terface, a language construct that constrains method signatures (and implicitly
constrains functionality). For each such module, the Aleph toolkit provides one
or more default implementations. Users are encouraged to substitute their own
customized implementations, especially “native” implementations that exploit
specialized or exotic hardware. We now give a brief description of the principal
packages.

— Communication Manager Transport-level communication within the Aleph
toolkit is mediated by the Communication Manager interface. Aleph cur-
rently provides two Communication Manager implementations: one uses Java
RMI (based on TCP stream sockets), and the other uses IP Datagrams.
These packages are discussed further in the performance section below. We
are about to acquire an ATM switch, and we are in the process of construct-
ing a “native” implementation for that medium.

— Directory Manager The Directory Manager locates a shared object’s prox-
ies. Aleph currently provides two implementations of the directory manager
interface: a conventional “home directory” scheme, in which each object has
a home PE that keeps track its current location and status, and a novel
“arrow” directory [13,9] scheme, based on a simple path reversal algorithm,
which has better scalability properties. We consider directory manager im-
plementations a rich source of future research.

— EBvent Manager Aleph Event implementation is encapsulated behind the
FEvent Manager interface. Techniques for reliable anonymous multicast re-
main an active area of research (for example, [10,17]). Most techniques
for ordered multicast originate from the Virtual Synchrony community (for
example, [3,7,23]), but the global synchronization needed to track group
membership changes would defeat our goal of achieving scalability through
anonymity. Several members of our research group are working on novel tech-
niques for event implementation. In the meantime, the current Aleph release
provides a simple Event Manager implementation that orders each event’s
signals via a “home” PE for that signal.

— Transaction Manager Aleph also provides support for atomic transactions
encompassing threads that run within a single PE. We are working on a
distributed transaction manager, as well as an integrated user-level check-
pointing scheme.

Aleph also provides some support for instrumentation, and a registry service
for long-lived PEs.
5 Performance

In this section, we examine the performance of the basic Aleph communication
) P
primitives. We will see that we can achieve reasonable communication latencies
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Fig. 3. Round-Trip Message Latency (Digital Unix)

on a local area network, and that different implementations of the communication
and directory managers provide different levels of performance.

Each time shown is a duration measured in milliseconds by calls to System. -
currentTimeMillis (), and each such duration is the average of one hundred
successive tests. All programs were executed with the default just-in-time com-
piler. We ran tests on both Sun workstations running Solaris 5.6 and JDK1.1.7A|
and Alpha Workstations running Digital Unix V 4.0 and JDK1.1.6. The work-
stations are linked by a complex mixture of 10MB and 100MB ethernets.

The first set of benchmarks measures round-trip times for simple messages,
expressed as function of message length. The very first message-passing bench-
mark measures the latency of a null remote method invocation (RMI) from one
host to another using the standard java.rmi package. This benchmark is not a
test of the Aleph software. Instead, it is intended to establish a baseline for Java-
based communication to which the Aleph implementation can be compared. This
remote method takes an variably-sized object as an argument, and immediately
returns its argument. The argument object includes an array of bytes whose size
was varied from zero to 42000 in increments of 6000.

The remaining message-passing benchmarks tested round-trip times for
Aleph messages. In each test, one PE sends a message to another. On deliv-
ery, that message’s run method sends back a pre-allocated reply message. We
measured the interval at the first PE between sending the first message and re-
ceiving the reply. Numbers shown are the average of 100 successive round trips.
This interval encompasses the following steps: serializing, transmitting and de-
serializingsthesfirstpmessagepexecutingpits run method in a separate thread at
the receiving PE, serializing, transmitting, and deserializing the reply message
and executing its run method in a separate thread.
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Fig. 4. Null remote thread creation (Solaris)

We tested two implementations of the Aleph CommunicationManager inter-
face: one that uses Java RMI (TCP-based) and one that uses UDP datagram
sockets. The results are shown in Figure 4 for two Digital Unix workstations. In
the RMI-based communication manager, the thread that receives the message
immediately passes a non-blocking message the message to a second thread,
which then executes the message’s run method. If the receiving thread were to
execute the run method directly, then a deadlock could occur if the run method
were to send a reply message back to the sender (a common occurrence). The
RMI-based implementation incurs two costs over the raw RMI benchmark: ex-
ecuting the message’s run method, and inter-thread communication. This cost
difference is visible for small messages, but becomes insignificant when send-
ing larger messages. The UDP-based implementation is slightly slower than the
RMI-based implementation. It too incurs costs associated with executing the
message’s run method, and inter-thread communication. (Originally, the UDP-
based implementation was faster, but the RMI-based implementation has been
more thoroughly tuned).

The second benchmark measures how long it takes to create a null thread at
a collection of PEs. This benchmark tests both point-to-point message-passing
and event performance. The first PE creates a remote thread at each of the
others, and, using a Join object, waits until they all finish. The Join object
is implemented as an Aleph Event object, where the calling thread is the only
listener. This interval encompasses the time needed to serialize the messages
(sequentially) to transmlt deserlahze and run each message (in parallel), and
ject that implements the Join object.

: we space, we present only the Solaris
- a & I
o
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The third benchmark measures the time needed to increment a shared
counter. The results are reported in Figure 5. Here, the “arrow” directory man-
agement protocol consistently outperforms the standard “home” directory struc-
ture. An algorithmic analysis of this performance difference lies beyond the scope
of this abstract, but is available elsewhere [9].

5.1 Status

Aleph has been tested on Digital Unix, SUN Solaris, Linux, Windows NT and
Windows 95. Installing Aleph on a new platform typically requires changing a
few lines in a single configuration file (usually just the pathname of the java
interpreter). The latest version of the Aleph toolkit is available via

http://www.cs.brown.edu/ mph/aleph.html.

The benchmarks described above can be found in the bench subdirectory.

6 Related Work

Pioneering work on DSM systems includes Ivy [18], Munin [5], Treadmarks [16],
Midway [6], and others. Early work on language support for DSM includes Linda
[2] and Orca [4]. The early Aleph design was substantially influenced by expe-
rience using the Cid DSM system [20]. In Cid, as in CRL [15], an object is
constrained to be a contiguous region of memory, a restriction not well-suited
to languages such as C4++ or Java where objects are typically implemented as

d on Java: Java/DSM [26], and Mocha
a Virtual Machine (JVM) running on
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top of Treadmarks [16]. The Infospheres [8] project is also based on Java, but
has less of an emphasis on shared objects. Mocha, like Aleph, provides the abil-
ity to run threads at different nodes, and to share objects among those threads,
without modifications to the JVM. Mocha provides a substantially different API,
with an emphasis on fault-tolerance and replication. The Jini system [25] pro-
vides Java-based support for distributed systems with a focus on “federating”
distinct services. JavaParty [14] provides language support for remote objects
and threads.
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Combining Adaptive and Deterministic Routing:
Evaluation of a Hybrid Router
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Abstract. A novel routing scheme is proposed for virtual cut-through
switching that attempts to combine the low routing delay of deterministic
routing with the flexibility and low queuing delays of adaptive routing
on k-ary n-cube networks. In this hybrid routing scheme a message is
routed as soon as possible along a minimal path to its destination even
though the routing choice may not be optimal. Results show that the
disadvantages of making a non-optimal routing decision are offset by its
speed. T'wo pipelined implementations of this hybrid routing mechanism
are evaluated and compared to traditional deterministic and adaptive
implementations. The experimental evaluations show that both hybrid
implementations do indeed achieve their objectives under various types
of traffic patterns.

1 Introduction

This paper reports on the implementation and evaluation of a hybrid routing
scheme that combines the advantages of deterministic and adaptive routing.

In the deterministic, or dimension-order, routing algorithm a message is
routed along decreasing dimensions with a dimension decrease occurring only
when zero hops remain in all higher dimensions. Virtual channels (VCs) are in-
cluded in the router to avoid deadlock [7]. Deterministic routing can suffer from
congestion since only a single path between source and destination can be used.

In adaptive routing, messages are not restricted to a single path when trav-
eling from source to destination. Moreover, the choice of path can be made
dynamically in response to current network conditions. Such schemes are more
flexible, can minimize unnecessary waiting, and can provide fault-tolerance. Sev-
eral studies have demonstrated that adaptive routing can achieve a lower latency,
for the same load, than deterministic routing when measured by a constant clock
cycle for both routers [13,15].

The delay experienced by a message, at each node, can be broken down into:
router delay and queuing (or waiting) delay. The former is determined primarily
bysthescomplexitypotfstheprouterssFheglatter is determined by the congestion at
each node which in turn is determined by the degrees of freedom the routing
algorithm allows a message. Note that the router delay is directly related to

A. Sivasubramaniam, M. Lauria (Eds.): CANPC’99, LNCS 1602, pp. 150—-164, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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the clock cycle time of the router. The main performance advantage of adap-
tive routing (besides its fault-tolerance) is that it reduces the queuing delay by
providing multiple path options.

However, the router delay for deterministic routers, and consequently their
corresponding clock cycles, can be significantly lower than adaptive routers [2,5].
This difference in router delays is due to two main reasons: number of VCs
and output (OP) channel selection. Two VCs are sufficient to avoid deadlock
in dimension-order routing [7]; while adaptive routing (as described in [9,4])
requires a minimum of three VCs in k-ary n-cube networks. In dimension-order
routing, the OP channel selection policy only depends on information contained
in the message header itself. In adaptive routing the OP channel selection policy
depends also on the state of the router (i.e. the occupancy of various VCs)
causing increased router complexity and higher router delays.

The results reported in [2,5] show that the router delays for adaptive routers
are about one and a half to more than twice as long as the dimension-order router
for wormhole switching. The advantage of adaptive routing in reducing queuing
delays is evaluated and reported in [10] for wormhole switching. A typical com-
parison of deterministic versus adaptive routing message latency (accounting for
the differences in cycle times) is shown in Figure 1: at low traffic and for short to
moderate message sizes, the latency of deterministic routing is smaller [10,16].
However, the flexibility of adaptive routing provides smaller queuing delays and
a much higher saturation point.

800.0

600.0 [

400.0 -

Message Latency (ns)
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Fig. 1. Message latency of deterministic (D) and adaptive (A) routing on a 10-
ary 3-cube network under random uniform traffic and with message length of 8
flits

In this paper we propose and evaluate a novel routing scheme for virtual cut-
through switching that attempts to combine the low router delay of deterministic
routing with the flexibility and low queuing delays of adaptive routing. The
i i is similar i ept to the hot potato algorithm and
e is routed as soon as possible although
puting decision is fast. The results show
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that the disadvantages of making a non-optimal routing decision are offset by its
speed. This hybrid routing mechanism relies on pipelined implementations where
different paths and stages are used for different routing modes. The experimental
evaluation of this router shows that it can achieve, under most conditions, the
low latency of the deterministic approach as well as the high saturation point of
the adaptive one.

The deterministic and adaptive routing algorithms and the routing delay
model for virtual cut-through switching are described in Section 2. Section 3
describes the hybrid routing scheme. Results from the experimental evaluation
comparing the hybrid router to the deterministic and adaptive ones under various
traffic patterns for k-ary n-cube networks are reported in Section 4. Section 5
discusses related work and concluding remarks are given in Section 6.

While the work described in this paper relates to a k-ary n-cube, the concepts
and router architecture can easily be extended to other topologies. These results
are valid for networks designed for chip or multi-machine level implementations
(NOWS).

2 Deterministic and Adaptive Routing

The interconnection network model considered in this study is a k-ary n-cube us-
ing virtual cut-through switching [14]: message advancement is similar to worm-
hole switching [17], except that the body of a message can continue to progress
even while the message head is blocked, and the entire message can be buffered
at a single node. Note that a header flit can progress to a next node only if
the whole message can fit in the destination buffer. For simplicity all message
lengths are equal.

2.1 Routing Models

In the deterministic routing scheme (dimension-order routing) [7], a message
is routed along decreasing dimensions with a dimension decrease occurring only
when zero hops remain in all higher dimensions. By assigning an order to the
network dimensions, no cycle exists in the channel-dependency graph and the
algorithm is deadlock-free.

The adaptive routing scheme considered in this work (Duato’s or *-channels
algorithm) is described in [9,4]. In this algorithm, adaptive routing is obtained
by using adaptive VCs along with dimension-order routing. A message is routed
on any adaptive channel until it is blocked. Once blocked, a message is routed
using dimension-order routing if possible. Note that a message may return to
the adaptive channels in the following routing decisions if the adaptive channels
are available. This algorithm has been proven to be deadlock-free as long as the
message size is greater than the buffer size (i.e. size of the the VC) and as long
aspapmessage’spheaderpflityispallowedstogadvance to the next node only if the
recelving queue at that node is empty. If the message size is less than the buffer
size, deadlock is prevented by allowing a message to advance only as long as the
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whole message fits in the receiving queue at that node. This algorithm requires a
minimum of three VCs per dimension per node for each physical unidirectional
channel. Therefore, the number of VCs grows linearly with network size.

2.2 Switching Models

In this study, both the deterministic and adaptive routing schemes use one uni-
directional physical channel (PC) per dimension per node. Figure 2 shows a
schematic for each of the routers in 2D. In the deterministic routing case, both
high and low VCs of each dimension are multiplexed onto one PC. In the adap-
tive routing case, the two deterministic and one adaptive VCs are multiplexed
onto one PC. For both cases there is only one PC for the sink channel. Once this
channel is assigned to a message, it is not released until the whole message has
finished its transmission.

The deterministic router uses storage buffers associated with OP channels,
while the adaptive router uses storage buffers associated with IP channels. When
using OP buffers, the routing decision must be made before buffering the message
which is ideal for deterministic routing since only one choice is available for an
incoming message.

When using IP buffers, the routing decision must be made after buffering the
message. It is suitable for adaptive routing since a message can usually be routed
on several possible OP channels. The adaptive router implements a round-robin
input message selection policy which checks for messages first among all adaptive
buffers and then among all deterministic buffers.

OP channel selection is performed by giving priority to those channels in the
dimension with the greatest number of hops remaining for the selected message.
Each dimension with decreasing number of remaining hops is tried until a free
channel is found or all channels have been tried. By using this OP channel
selection policy, the greatest amount of adaptivity for a message is retained
which reduces blocking.

2.3 Modeling Router Delay

In this section we describe a router delay model for the virtual cut-though de-
terministic and adaptive routers. The model is based on the ones described in
[5,2,10]. These models account for both the logic complexity of the routers as
well as the size of the crossbar as determined by the number of VCs that are
multiplexed on one PC. These models were modified to account for the varying
buffer space used in virtual cut-through switching.

The address decoding term (T4 p) includes the time for examining the packet
header and creating new packet headers for all possible routes. The time required
for selecting among all possible routes is included in the routing arbitration delay
(Tarp)- The crossbar delay (T¢p) is the time necessary for data to go through
thepswitch'sperossbarpandypispusuallysimplemented with a tree of gates. The flow
control delay (Trc) includes the time for flow control between routers so that
buffers do not overflow. Tsg; is the time for selecting the appropriate header.
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Fig. 2. Schematics of deterministic and adaptive 2D routers

Finally, the virtual channel controller delay (Ty ¢) includes the time required for
multiplexing virtual channels onto PCs.

For all dimension-order routers simulated here, the number of degrees of
freedom (F') equals one since there exists a single routing option for each message.
The number of switch crossbar ports (P) is three because a deterministic router
routes a message in either the same dimension on which the message came (on
either the low or high channel) or routes it to the next dimension. For all of the
adaptive routers, F' = P—2(n—1) where n is the number of network dimensions.
This relationship holds because adaptive routing can use the adaptive channels
in all the dimensions while only two virtual channels per PC can be used in
dimension-order (to avoid deadlock). Note that this relationship includes the
delivery port.

Delay equations for the routers are derived using the above parameters. The
constants in these equations were obtained in [5] using router designs along with
gate-level timing estimates based on a 0.8 micron CMOS gate array process.
Three main operations are used in all of the routers simulated here which con-
tribute to the following three delays: T, is the time to route a message, T is the
time necessary to transfer a flit to the corresponding OP channel, and T is the
time required to transfer a flit across a PC. The equations are:
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Using the above equations, the delay values were calculated for each of the
router algorithms simulated and are shown in Table 1. It is assumed that all three
operations are overlapped through pipelining as described in [10], and therefore
the clock period is determined by the longest delay: T,cperiod = Maxz (T, Ts, T)

From the data in Table 1, we observe that increasing the buffer size in deter-
ministic and adaptive routers, increases the overall router delay only when large
buffer sizes are used. In deterministic routers, for small and moderate buffer
sizes the clock cycle is dominated by the transfer time 7, while for larger ones
it is dominated by the switching time T;. In adaptive routers, the cycle time is
dominated by 7, for small and moderate buffer sizes and dominated by T for
large buffer sizes.

All of these added delays result in adaptive routers that are 15 to 16 % slower
than deterministic routers. These results are similar to the results in [2] where
15% to 60% improvement is required for f-flat routers with similar number of
VCs and under wormhole switching.

|B]| T | Ts | T. [|CC Period| |B][ T | Ts [ T. [|CC Period|
8 |[4.70/14.75|6.74 6.74 8 ||7.80(5.79|7.09 7.80
16(|4.70(5.35|6.74 6.74 16(/7.80(6.39|7.09 7.80
241|14.70(5.70(6.74 6.74 241|7.80(6.74(7.09 7.80
32|(4.70/5.95|6.74 6.74 32||7.80(6.99|7.09 7.80
48(4.70/6.30(6.74 6.74 48]|7.80(7.34|7.09 7.80
64|(4.70/6.55|6.74 6.74 64/|7.80(7.59|7.09 7.80
96((4.70/6.90(6.74 6.90 96/|7.80(7.94|7.09 7.94
a- Deterministic router b- Adaptive router
(C=2, P=3,and F =1 for all) (C=3and P =10 and
F =6 for all)

Table 1. Deterministic and adaptive router delays (in nsec) for k-ary 3-cube
networks

3 Hybrid Routing

This section describes the mechanism of the hybrid routing scheme along with
two implementations: a Pipelined Hybrid Router (PHR) and a Super-Pipelined
Hybrid Router (S-PHR).

3.1 Hybrid Router Model

The hybrid router consists of three logically independent and pipelined message
paths: a Fast Deterministic Path (FDP), a Slow Deterministic Path (SDP), and
an Adaptive Path (AP)!. The routing algorithm is shown in Figure 3 while the
pipeline stages of the router are shown in Figure 4 and 5. Note that the longest
stage in all paths determines the maximum cycle time of the hybrid router.

L Some physical stages are actually shared among these logically independent paths.
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Fig. 3. Flow chart of hybrid routing algorithm

The FDP has the highest priority and is used for a message flit entering on
a deterministic channel that is also able to leave on a deterministic channel of
the same type (low/high) and dimension. Although the choice to route deter-
ministically first may reduce adaptivity, the routing decision and switching logic
along this fast path is simpler than the traditional deterministic and adaptive
routing and requires the least number of stages: h + d stages for a header flit
and d stages for a data flit.

If a message cannot be routed along the FDP (i.e. if a deterministic channel
of the same type is not available or a message is being switched to a different
type or dimension), then the message is sent along the SDP which requires more
logic and more stages than the FDP.

The AP is used to adaptively route a message and has the lowest priority.
It is only used when both the FDP and SDP are unavailable. Both the SDP
and AP take H + D cycles for a header flit and D cycles for a data flit, where
(H 4 D) > (h+ d). Although a header flit requires more cycles than a data flit,
a data flit must always follow a header flit. Therefore, a data flit will block if
the header flit has not yet advanced through a given stage.

This routing scheme is deadlock free: for any given message, the selection of
paths is always a true subset of those that could be selected by the adaptive
algorithm in [9]. Since the adaptive algorithm has been proven deadlock free,

ol Lalu Zyl_ﬂbl
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3.2 Pipelined Implementations

The Pipelined Hybrid Router (PHR) implementation is shown in Figure 4. It uses
the flow chart in Figure 3 where h =d = H =1 and D = 2 and corresponds to
a 2/1 stage pipeline for the FDP and a 3/2 stage pipeline for the SDP and AP.
Because the routing decision and switching logic of the FDP is simplest among
all the paths, the T, and T delays combine into one stage (FD1), while the T,
delay is kept in a separate stage (F'D2). The SDP and AP are more complex
and require separate stages for each of the T,., Ty, and T, delays, resulting in
a 3/2 stage pipeline. Note that the crossbar is physically shared between both
SDP and AP and all paths share the VC control logic.

The Super-Pipelined Hybrid Router (S-PHR) relies on deep pipelines to im-
plement the hybrid router. Using deep pipelines can increase overall throughput
at the cost of additional latch delays. Also the clock skew becomes more promi-
nent: if the clock cycle becomes as small as the sum of the clock skew and latch
overhead further p1pehn1ng is no longer useful. An important factor to consider
i Since the stages in all three paths are
each stage of the PHR is divided into
2/1 stage pipeline in the FDP of the
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PHR becomes a 4/2 stage pipeline in the S-PHR, while the SDP and AP paths
are modified from 3/2 stage pipelines to 6/4 stage pipelines. Once again, the
crossbar is physically shared between both SDP and AP and all paths share the
VC control logic. Figure 5 shows the new schematic for this super-pipeline. Note
that the main difference between the PHR and S-PHR is the number of stages
required for each path. The flow chart in Figure 3 is used in the S-PHR where
h=d=H=2and D =4.

3.3 Clock Cycle Times

The performance of the pipelined and super-pipelined implementations of the
hybrid router is compared to the corresponding implementations of both the
deterministic and adaptive routers.

Pipelined Router Implementation. Both the deterministic and adaptive routers
are implemented as a 3/2 stage pipeline, where 3 stages are required for a header
flit and 2 stages are required for a data flit. The cycle times for both are obtained
using the equations in Section 2.3. Note that the deterministic router is not
implemented using a 2/1 stage pipeline as in the hybrid router. This is because
to accommodate both the routing and switching delays for the FDP into one
stage would require the deterministic router’s cycle time to be comparable to
that of the adaptive router’s. This greater cycle time would offset any advantage
gained from having fewer number of cycles. Simulation results supporting this
conclusion can be found in [1].

In the more complex hybrid router, the cycle time for its 3/2 stage pipeline
path is much larger than that for the 3/2 stage pipeline in the deterministic
router. Therefore all the necessary logic in the FDP of the hybrid router can
fit into a 2/1 stage pipeline implementation without greatly increasing the cycle
time of its 3/2 stage pipeline paths (SDP and AP paths). Since the cycle time is
not greatly increased by adding the 2/1 stage pipeline path (FDP), the advantage
of fewer number of cycles is retained. The cycle time of the pipelined hybrid
router (PHR) is simply one gate delay larger than that of the adaptive router
to account for the increased critical path length due to the inclusion of the 2/1
stage pipeline path (FDP).

Super-Pipelined Router Implementation. The super-pipelined implementation
for the routers consists of dividing the work in each stage of its corresponding
pipelined implementation into two. This results in a 6/4 stage super-pipeline
for the adaptive router and a 4/2 stage super-pipeline for the FDP and a 6/4
stage super-pipeline for the SDP and AP of the hybrid router. The deterministic
router’s super-pipelined implementation is a special case and is discussed later.

The routing and switching delays for the super-pipelined implementation of
allatheprouterspisprepresentedubyn?gmand Ts, respectively. These delays were
calculated using their, corresponding pipelined delays (T, and Ts) in Equation 1.
Note that the Tr and Ts delays are represented as Ts_ppr in Equation 1, while
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their corresponding T, and T delays are represented by Tpr. The setup time
for the latch (L) is 0.8 ns and the delay for one gate (G) is 0.6 ns.

(Trr — L)
5050 —‘*G—FL (1)

The Tr and Ts delays involve subtracting the latch setup delay to obtain
the combinational logic delay which is then split in two in the super-pipelined
router. The number of integer gate delays is then calculated and the latch setup
time is added back.

Since the T. delay (pipelined channel delay) consists of a set of gates as
well as a wire, this case is considered separately. The two stages for the super-
pipelined implementation of this delay consist of the VC controller delay (Ty =
1.24 + 0.6log2C) in one stage and the propagation delay which is required for
transferring a flit across the physical wire (Tp = 4.9) in the other stage.

The cycle time for the super-pipelined router (CCs_ppr) is then determined
by the longest delay among all super-pipelined stages.

Ts_pr = [

CCs-_pr = Max(Tg,Ts, Ty, Tp) (2)

As previously mentioned, the deterministic router’s super-pipelined imple-
mentation is a special case. When the above equations are used for the determin-
istic router, Tp is found to be the bottleneck. Since the deterministic router’s 7.
delay of 4.7 ns is already smaller than the Tp delay of 4.9 ns, the super-pipelined
routing delay (Tg) is the same as that of the pipelined routing delay (7). All
other delays are calculated using the above equations which result in a 5/4 stage
super-pipeline. The delays for this super-pipeline are found in Table 2a.

A further reduction in the number of stages in the deterministic router can
be performed without greatly increasing the overall router cycle time. This is
because Ty is quite small as seen in Table 2a and its delay can be combined with
the two super-pipelined switching stages (Ts1 and Ts2). This results in a 4/3
stage super-pipeline. These delays are shown in Table 2b. This 4/3 stage super-
pipeline was used for all the deterministic router super-pipeline simulations.

|B|| Tr [Ts1|Ts2| Ty | Te [[CC Period] |B|| Tr [Ts1[Ts2 |Tv| Te [[CC Period]
8 (14.70]3.20(3.20{2.64|4.90 4.90 8 |14.70(3.00(3.00| - [4.90 4.90
16(/4.70]3.20(3.20{2.64|4.90 4.90 16{|4.70|4.40|4.40| - |4.90 4.90
32(|4.70(3.80|3.80|2.64[4.90 4.90 32|(4.70(4.40(4.40| - 14.90 4.90
961(|4.70(4.40]4.40|2.64]4.90 4.90 96{|4.70(5.00|5.00| - |4.90 5.00
a - 5/4 stage super-pipeline b - 4/3 stage super-pipeline

Table 2. Super-pipelined deterministic router delays (C =2, P =3, F = 1) for
k-ary 3-cube networks (in nsec) for two different super-pipeline implementations

The cycle times for the pipelined and super-pipelined implementations of the
three routers are shown in Table 3.
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Deterministic|| Adaptive Hybrid
B|[PR[S — PR||PR|S — PR|[PR|S — PR
8 [16.74] 4.90 [[7.80] 4.90 [[8.40] 5.00
16//6.74| 4.90 ||7.80| 4.90 |8.40| 5.00
32(16.74| 4.90 ||7.80| 4.90 |{|8.40| 5.00
96]/6.90] 5.00 ||7.94| 4.90 |[|8.54| 5.00

Table 3. Clock cycle times for all three routers (in nsec) for k-ary 3-cube networks

4 Experimental Evaluation

Simulations of the deterministic, adaptive and hybrid routing implementations
were performed using a discrete-time simulator on an 8-ary 3-cube network. The
simulations use a stabilization threshold of a 0.005 difference between traffic
1000 clock cycles apart to determine steady state. Message sizes varied from 8
to 32 flits and buffer sizes used in the simulation are all equal to a single message
length. The adaptive and hybrid routers use three VCs per dimension, while the
deterministic router uses two. The simulator implements a back-pressure mech-
anism and varies traffic from 0.1 until saturation was reached in 0.1 increments.
The following five traffic patterns were simulated: random uniform, complement,
perfect shuffle, bit-reversal, and butterfly.
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Fig. 6. Message latency of deterministic, adaptive and hybrid pipelined imple-
mentation routers in an 8-ary 3-cube under random uniform traffic

4.1 Performance of Hybrid Routing
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accepted traffic versus applied load for complement traffic which has represen-
tative behavior of most traffic patterns simulated. An expanded version of this
paper with complete results can be found in [1].
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Message Latency. Under random uniform traffic, for small messages (8 flits)
the latency of the Pipelined Hybrid Router is not only lower than the pipelined
adaptive one but is also lower than the pipelined deterministic one at low traffic.
This is due to the fact that the Pipelined Hybrid Router has a 2/1 stage pipeline
for header/data flits, while the deterministic router has a 3/2 stage pipeline.
Even though the delay per stage in the deterministic router is shorter than the
Pipelined Hybrid Router’s, the greater number of stages dominates. For medium
messages (16 flits) the latency of the Pipelined Hybrid Router is very close to
that of the deterministic one at low traffic and follows the adaptive one at higher
traffic. For larger messages (32 flits) the Pipelined Hybrid Router latency is
less than the adaptive one at low traffic and greater than the adaptive one at
high traffic. In general, the latency of the Pipelined Hybrid Router follows the
deterministic one at low traffic and the adaptive one at high traffic.

size increases under random uniform
e PHR decreases compared to the de-
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terministic and adaptive pipelined routers. This is due to the fact that more
messages, and therefore headers, are needed to achieve the same utilization with
short message length and the PHR has a performance advantage for header flits,
especially at low utilization. While the deterministic router has a 3-stage header
flit pipeline with a low cycle time, the PHR has a 2-stage deterministic header
flit pipeline with a higher cycle time. Since the number of pipeline stages domi-
nates performance (and not the cycle time), the performance difference between
the routers is greater for small message sizes than for large message sizes. This
difference also exists at high traffic, although it’s much smaller due to the fact
that more message blocking occurs covering up differences in header flit time.

Effects of Traffic Patterns. The performance of the PHR under all non-random
traffic patterns is similar to that for random uniform traffic. Once again, the PHR
performs best at low traffic, while the adaptive router performs slightly better at
high traffic. This is due to the higher priority given to the deterministic paths in
the PHR: less choices are available as a message is routed through the network
on deterministic channels.

Saturation Point. Under random uniform traffic, the saturation point of the
PHR is, in all cases, much higher than that of the pipelined deterministic router
and is very close to the adaptive one. One reason for the slight decrease in sat-
uration point for the PHR with respect to the adaptive router, is that messages
are routed onto the deterministic channels first, reducing the number of op-
tions available to a message later on. As traffic increases, this effect causes more
blocking and slightly smaller saturation points. Under all non-random traffic the
PHR’s saturation point is once again much higher than that of the pipelined
deterministic router and is very close to the adaptive one.

4.2 Effects of Super-Pipelining

The effects of super-pipelining on message latency are shown in Figure 7. Under
all traffic patterns, the super-pipelined implementations for all routers achieve
better overall performance gain than the pipelined implementations. This is due
to the higher throughput that is achieved by deeper pipelines. Because of the
higher throughput, all super-pipelined routers achieve higher saturation points
than the pipelined implementations.

4.3 Effects of Path Priorities

The hybrid router’s implementation for all the previous results includes first
routing on the FDP, then on the SDP, and finally on the AP. This scenario is
referred to as the SDP scenario. However, by routing the AP last, adaptivity
thatpcouldgbeputilizedpatyhighploadspmay be lost. Therefore, simulations were
performed to see if switching the priorities of the AP and SDP would improve
performance near saturation. In this scenario, the FDP is still given highest
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priority. However, the AP is given the next highest priority, followed by the
SDP. This scenario is called the AP scenario.

The simulated results between these two scenarios for all traffic patterns
are so close that the resulting graphs will not be shown here. However, such
close results demonstrate that although the AP scenario may allow more routing
choices as load increases, the SDP scenario performs equally well because of the
high priority and low cycle time of the FDP. Since the FDP has the highest
priority, the benefit of retaining messages on deterministic channels allows the
FDP path to be utilized more often and offsets any adaptivity loss.

5 Related Work

Some of the earliest work in understanding the effects of router complexity on
cycle time involved deterministic routers [8,6,11]. The deterministic router com-
plexity was then compared with adaptive router complexity for wormhole switch-
ing [2,5,10]. However, the comparison in [2,5] does not account for the reduced
queuing delay in adaptive routing. In [10] the reduction in queuing delay for
wormhole switching is taken into account and the comparison is based on a
constant total buffer area.

The Triplex routing algorithm is an example of a multi-class routing algo-
rithm in which the dynamic selection of oblivious, minimal fully adaptive, and
non-minimal fully adaptive routing is possible [12]. In the Cray T3E router,
messages can be routed deterministically or adaptively by simply setting a bit in
the header [18]. The router supports a shortcut for messages that continue trav-
eling in the same dimension and uses direction-order routing for its deterministic
routing algorithm. It also implements a routing function that bases the VC se-
lection on the current VC and destination and implements a VC optimization
scheme for VC balancing.

6 Conclusions

This paper reports on the empirical evaluation of a hybrid routing scheme which
combines the low router delay of deterministic routing with the flexibility and low
queuing delays of adaptive routing. This hybrid routing mechanism is realized
using two different implementations (PHR and S-PHR) in which different paths
and stages of the router are used for different routing modes. The scheme also
relies on making the ”common case fast” and is similar in concept to the hot
potato algorithm.

The results from the simulation evaluation of this scheme show that both im-
plementations of the hybrid router do achieve their objectives: a message latency
comparable to that of the deterministic router at low traffic and a saturation
pointycloseptonthatyofpthepadaptivesrouter at high traffic. In addition, deeper
pipelines achieve better overall performance gain than the pipelined implemen-
tations.
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Abstract. High-speed local area networks (LANs) support many distributed
applications. These applications require some system availability guarantees.
However, LANs may change their topology due to switches and hosts being
turned on/off, link remapping, and component failures. In these cases, a
distributed reconfiguration algorithm is executed. This algorithm analyzes the
topology, computes the new routing tables, and downloads them to the
corresponding switches. Unfortunately, in most cases user traffic is stopped
during the reconfiguration process to avoid deadlock. Although network
reconfigurations are not frequent, they may take hundreds of milliseconds to
execute, thus degrading system availability significantly. In this paper, we
propose a new deadlock-free distributed reconfiguration algorithm that is able
to asynchronously update the routing tables without stopping user traffic. This
dynamic reconfiguration algorithm is valid for any topology, including regular
as well as irregular topologies.

1 Introduction

Current high-speed LANs (Autonet [1], Atomic [2], Myrinet [3], and ServerNet [4])
use techniques that have been successfully applied in interconnection networks for
parallel computers such as point-to-point links between switches and pipelined
switching techniques. These networks have also inherited some characteristics from
conventional LANSs, such as wiring flexibility and topology variability. The unique
properties of high-speed LANs give rise to some problems related to topology
configuration and message routing. In particular, high-speed LANs may change their
topology due to switches and hosts being turned on/off, link remapping, and
component failures. In these cases, in order to provide a high system availability, a
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reconfiguration algorithm must update the routing tables so that communication is
possible between different components, as long as the network remains connected.
Reconfiguration mechanisms in current high-speed LANs are based on static
reconfiguration techniques. Autonet [1] is the most representative example. In this
technique, a distributed reconfiguration algorithm is triggered when a significant
change in the topology occurs, spreading it to the whole network, and updating the
routing tables in hosts and switches. This algorithm does not solve the problem of
deadlocks during the reconfiguration process. Instead, the problem is avoided by
stopping application traffic before starting the reconfiguration process. When the
reconfiguration finishes, packet transmission is allowed again. As a consequence,
performance degradation of the interconnection network is produced. In [5,6],
Rodeheffer and Owicki analyzed the reconfiguration effect on average packet latency.
Fig. 1 shows this effect:
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Fig. 1. Consequences of the static reconfiguration in Autonet. Under normal conditions,
the network latency varies from 50 to 200 microseconds. Each reconfiguration needs
from 150 to 300 milliseconds. These measures depend on several parameters: topology,
load, etc.

Nowadays, many distributed multimedia applications such as real-time video
compression and decompression, video-on-demand servers, distributed databases,
etc., require computing power beyond that available in current uniprocessors. These
applications require a very high network bandwidth, which can be provided by means
of a high-speed LAN.

When multimedia applications are executed on a local area switch-based network,
topology changes may affect their behavior. If static reconfiguration is used, the
average latency increases dramatically during the reconfiguration. If we cannot stop
the flow of information generated by the applications, then it will not be possible to
guarantee the required QoS [7].

In our study, we tackle the reconfiguration of the interconnection network from a
dynamic point of view: Performing network reconfiguration without stopping the
transmission of user packets. The application of a dynamic reconfiguration technique
will reduce the negative effects of the reconfiguration process, eliminating the spikes
observed in Fig. 1. Dynamic reconfiguration provides a higher system availability [8]
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and is especially suitable for the distributed multimedia applications mentioned
above, which require a guaranteed QoS. It would be noted that dynamic
reconfiguration by itself does not provide QoS guarantees. However, The converse is
true: If dynamic reconfiguration is not implemented, it will be impossible to
guarantee QoS during the reconfiguration because message traffic will be stopped for
tens or hundreds of milliseconds.

In this paper, we propose a new distributed deadlock-free reconfiguration algorithm
suitable for generic topologies, including irregular ones. This algorithm is able to
asynchronously update the routing tables without stopping user traffic. It has been
developed for virtual cut-through (VCT) switching because it is easier to avoid
deadlocks in VCT networks than in wormhole (WH) networks. This is not a serious
constraint because VCT may replace WH in the near future to transmit messages in
networks of workstations (NOW). Effectively, the distance between switches in a
NOW is much longer than in a multicomputer. As a consequence, WH buffers must
be very large in order to support channel pipelining [3]. On the other hand, in VCT,
buffer capacity is determined by packet size, being independent of wire length. This
switching technique requires a bounded packet size but it is not a significant
restriction because current software messaging layers use a fixed packet size to
increase performance by pipelining through the network interface card [9].

The most important problem that arises when using dynamic reconfiguration is the
presence of deadlocks. We assume that switches operate asynchronously. Indeed, all
the commercial switches operate in this way [3,4]. Thus, it is not possible to update
the routing tables of several switches at once. For this reason, during a
reconfiguration process, certain switches will route messages according to the old
routing tables while other switches will already be using the new ones. More than one
routing function may be simultaneously working in the network (one for each
topology change).

Guaranteeing deadlock freedom when facing this situation can be complicated. To
study the deadlocks generated by the interaction of several routing functions on an
irregular topology we have implemented a tool that analyzes the properties of the
interconnection network [10]. This tool allows the definition of network topologies
and routing algorithms, and determines the existence of cyclic dependencies between
channels. It also allows the analysis of the network behavior when switches/hosts are
added to or removed from the network.

In Section 2, we present an informal description of the algorithm. Section 3
introduces different aspects related to the up*/down* routing algorithm. Section 4
presents our dynamic reconfiguration technique called Partial Progressive
Reconfiguration. Finally, the last sections present our conclusions and future work.

2 Informal Description

This section describes the protocol for dynamic reconfiguration in an informal way.
As indicated in the introduction, the key contribution of this protocol is its ability to
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update routing tables asynchronously without stopping message traffic while
guaranteeing the absence of deadlock.

The first step in network reconfiguration is detecting the addition and removal (or
failure) of network components (links, switches, and/or hosts). This issue has been
addressed elsewhere [1,5,6] and is beyond the scope of this paper.

Once a change in the topology has been detected, it is necessary to update the routing
tables at one or more switches and/or hosts. Our primary focus is on achieving a
distributed update of the routing tables without stopping message traffic and without
introducing deadlocks. As most commercial switches do not provide any support to
synchronize that operation, routing tables must be updated asynchronously. Note that
changes in the host routing tables cannot lead to deadlocks in the network, provided
that the routing algorithm implemented by the switches is deadlock-free. However,
switch routing table updates may lead to deadlock. Therefore, in this paper we will
only focus on updating switch routing tables without introducing deadlock.

Several researchers proposed distributed deadlock-free routing algorithms for
irregular interconnection networks [1,11-14], as well as general methodologies for the
design of routing algorithms [12,13]. A straightforward way to avoid deadlock
consists of removing cyclic dependencies between network resources (i.e., links and
buffers) [15]. It may seem that when the topology changes, we only need to define a
deadlock-free routing algorithm for the new topology, and update the routing tables.
This would be true if all the routing tables could be updated synchronously and the
switches purge pending messages traffic. As this is not possible, previously proposed
solutions either may lead to deadlock or require stopping message traffic until all the
routing tables have been updated. The reason is that the new routing algorithm may
introduce some resource dependencies that did not exist in the old one. Of course, it
will have to remove other dependencies to avoid cyclic dependencies and deadlock.
The problem arises when routing tables are updated asynchronously because the new
additional dependencies may arise before the old ones are removed, possibly leading
to deadlock.

This problem cannot be solved by establishing an appropriate ordering to update the
routing tables. Even for some very small networks, we found that there is no sequence
of switch routing table updates that could guarantee deadlock freedom at all times.
Note that every routing table update at a given switch must lead to a connected
routing algorithm, i.e., the routing algorithm must be able to route messages destined
for any host at any switch. Otherwise, some messages cannot be routed and would
have to be discarded or would remain in the network.

The solution proposed in this paper consists of performing sequences of partial
routing table updates, as opposed to completely updating a given routing table.
Entries in each table are progressively removed and added step by step until the
routing table corresponding to the new routing algorithm is reached. After each partial
update, each switch must synchronize with some of its neighbors. The protocol
proposed in this paper guarantees that the global routing algorithm remains connected
and deadlock-free at any time.

The proposed protocol is very efficient. It interleaves short control messages between
user messages. A single control message serves two purposes: carrying information
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about the required update in the routing table at the receiving switch, and
guaranteeing that all the messages that have to be routed with the old routing table
have already been forwarded from the sender switch. Therefore, a particular switch
processes messages with the current routing table until it receives a control message
requesting a partial table update. When this message is received, the routing table is
immediately updated, and successive messages arriving through the same link are
routed according to the updated routing table. The efficiency of the proposed protocol
comes from the fact that table update delay is several orders of magnitude shorter than
the time required to stop traffic in the entire network, download the new routing
tables, and notify all the switches that the update is done. Moreover, dynamic
reconfiguration only affects a (usually small) region of the network. Traffic in the
regions of the network not requiring routing table updates is not affected at all by the
reconfiguration process. However, with static reconfiguration, traffic is stopped in the
whole network until all the routing tables have been updated.

In this paper we have focused on the up*/down* routing algorithm. Nevertheless, our
reconfiguration technique can be applied to several adaptive routing algorithms that
use up*/down* routing as escape channels [12,13]. Up*/down* routing algorithm
defines a logical tree in the network. Messages are first routed toward the root of the
tree until they find a common ancestor. Then messages are routed down the tree until
they reach the destination switch. For this algorithm, we have found that it is easy to
add switches without introducing cyclic dependencies between resources. Simply, we
add them as leaves of the tree. Unfortunately, this may be inefficient in some cases
because messages cannot be routed through leaf switches. Therefore, we may need to
reconfigure the tree to make it more efficient. Moreover, if the new switch connects
two subnetworks that were initially isolated, it will become a leaf belonging to two
trees. This situation is depicted in Fig. 3. The leaf switch is node q. It should be noted
that both subnetworks remain disconnected after adding the new switch because the
up*/down* routing algorithm does not allow traffic through leaf switches.
Additionally, now the network has more than a single root node. Similarly, when the
root switch of a tree is removed, two or more root nodes may appear. Fig. 4 shows an
example. Again, the up*/down* routing algorithm does not allow traffic between root
nodes, which become logically isolated.

In order to allow traffic between all the switches, the tree has to be reconfigured. This
can be done by changing the orientation of the links in the tree. As an example, Fig.
11 shows the network presented in Fig. 3 after changing the orientation of some links.
As can be seen, there is a single root node after reconfiguring the tree. These link
orientation changes must be performed step by step, possibly updating each routing
table partially, and synchronizing with neighbor switches.

In order to simplify link orientation changes, we analyze the network in a hierarchical
way. Several switches can be grouped together, forming a region. Fig. 5 shows how
the switches in Fig. 3 can be grouped into several regions. Note that the use of regions
considerably simplifies the network graph (see Fig. 7) while retaining the important
properties, i.e., the existence of more than a single root node.

Finally, in order to establish the order and the consequences of link orientation
changes, and guarantee the correctness of the proposed protocol, we propose some
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definitions (root node, break node, etc.). These definitions will considerably simplify
link orientation changes through nontrivial results. For example, moving the position
of the root switch in the network does not require any change in the routing tables, as
long as it does not cross any break node. The following sections propose some
definitions, and present the dynamic reconfiguration protocol formally.

3 Up*/Down* Routing Algorithm

Up*/down* routing is a partially adaptive deadlock-free routing algorithm suitable for
irregular topologies. This algorithm is based on a cycle-free assignment of direction
to the operational links in the network. This assignment is always possible, regardless
of network topology [1]. Therefore, the network is configured as an acyclic directed
graph. For each link, a direction is named u#p and the opposite one is named down.

To avoid deadlocks, legal routes never use a link in the up direction after having used
one in the down direction. The other sequences (up-up, up-down, and down-down) are
allowed. In other words, messages can cross zero or more links in the up direction,
followed by zero or more links in the down direction. The name up*/down* derives
from this fact (in some grammars, the asterisk indicates a list). In this way, cycles in
the channel dependency graph [15] are avoided, thus preventing deadlock.

Fig. 2 shows an example where each link has been assigned a direction. Arrows
indicate the up direction. In this paper, the graphs will only include switches as
mentioned in Section 2.

Fig. 2. Example of link assignment in an up*/down* routing algorithm. In order to
avoid deadlocks, certain routes such as (a—c—d) and (c—f—e) are not allowed.

3.1 Properties of Correct and Incorrect Graphs in Up*/Down* Routing

A root node is a node in a directed graph that is not the source of any arc. The
up*/down* routing algorithm requires the existence of a single root node in the graph.
The reason is that there are no legal routes between two root nodes because each
possible route would require down to up transitions. This restriction is required for
network connectivity. In Fig. 2, the root node is node d.

A break node is a node that is the source of two or more arcs. In the up*/down*
routing algorithm, these nodes prevent certain connections (input port - output port)
from being used by the messages crossing it. These restrictions are necessary for
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deadlock freedom. There must exist one break node in every cycle of the original
undirected graph of the network, but its position is unrestricted. We can see two break
nodes labeled as ¢ and fin Fig. 2.

In up*/down* routing, the associated directed graph will contain one and only one
root node. Additionally, that graph will be acyclic. A directed graph that is acyclic
and contains a single root node is called a correct graph. A correct graph may include
several break nodes within its topology, as many as necessary to break all the cycles.
Fig. 2 shows a correct graph.

Obviously, an incorrect graph is one that does not meet the restrictions imposed in
the previous definition. This implies the absence of a root node, the existence of more
than one root node, or the existence of cycles. If there is no root node, then the graph
will contain one or more cycles and the up*/down* routing cannot guarantee
deadlock freedom. If there are several root nodes, then the up*/down* routing cannot
guarantee network connectivity. There is always at least one false break node between
two root nodes. A false break node is a break node in which two links with the down
end connected to it do not belong to the same cycle in the undirected graph of the
network. A false break node splits the network into two unreachable regions.
Obviously, a correct graph contains no false break nodes. Fig. 3 shows an example of
incorrect graph with several root nodes.

Fig. 3. Incorrect graph. Root nodes are labeled as a, /, and r, respectively. Break nodes are
labeled as ¢, g, h, m, p, u, g, and S, respectively. The last two ones are false break nodes.

3.2 Handling Changes in Topology

For a given network topology, up*/down* routing is based on a link direction
assignment that can be represented as a correct graph. When some switches are added
to or removed from the network, its topology changes. Then, a correct graph may
evolve into an incorrect graph. Next, we detail these situations.
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Switch Activation

During the activation process we will avoid incorrect graph situations produced by
either the absence of a root node or the presence of cycles in the graph. However, an
incorrect graph may arise due to the appearance of several root nodes (it will be
solved later).

When a new switch is added, a direction must be assigned to the links connecting to
it. This assignment should not produce cycles in the directed graph. A simple
approach consists of assigning a direction to those links in such a way that the down
direction goes toward the new switch. By doing so, messages will be able to use the
new links to route to/from the new switch, but not to cross it. The new switch will
become a break node or a false break node if it is connected to the network through
two or more links.

Switch Deactivation

When a switch detects that one of its neighbors has been deactivated, it starts a
reconfiguration process similar to the activation process.

A switch deactivation cannot leave the directed graph without a root node, but it may
produce the appearance of several new ones. The deactivation of several switches
(including the root node), produces at least one new root node. Note that the directed
graph is acyclic before switch deactivation. Fig. 4 shows an example of a correct
graph that evolves into an incorrect graph after the deactivation of two switches,
which produces several root nodes.

Switch deactivations imply that messages routed to removed components must be
discarded. Also, messages requesting removed components must be discarded if they
cannot use another route. In this case, a shorter reconfiguration time implies less
discarded messages.

4 Partial Progressive Reconfiguration

Before changing the routing tables according to the new topology, it would be
necessary to assign or modify the direction of several links to evolve from an
incorrect graph into a correct graph.

We saw in the previous section that node activation/deactivation avoided incorrect
graph situations produced by the absence of a root node. We also saw that the graph
cannot contain cycles. However, the directed graph may contain several root nodes. In
what follows, we will show how to correct incorrect graphs with several root nodes.

It should be noted that a static reconfiguration algorithm stops traffic and computes
the direction assignment for every link in the network starting from scratch, i.e., it
discards the previous configuration. On the other hand, a dynamic reconfiguration
algorithm should not stop traffic. It progressively changes the orientation of the links,
until it reaches a correct graph according to the new topology. Now we present a five-
step dynamic reconfiguration algorithm:
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Fig. 4. Switch deactivation. After deactivation of switches @ and ¢, the root node disappears.
Then, three new root nodes, labeled as b, d, and e, appear.

4.1 Step 1: Generation of Correct Regions

When a directed graph contains several root nodes, it is not possible to route messages
between root nodes. In this case, it is possible to split the directed graph into several
correct subgraphs. A correct region is a subgraph of an incorrect graph that is correct.
The reconfiguration process must determine the correct regions in the network. As the
directed graph for the network contains no cycles, the network has as many correct
regions as root nodes (one root node in each correct region). Fig. 5 shows the graph in
Fig. 3, also indicating the correct regions.

4.2 Step 2: Obtaining the Virtual Inter-Region Graph

We call frontier nodes those switches that have at least one upward link crossing the
limits of a region containing them. Certain switches are frontier nodes in every region
in which they are included. We will only consider these switches. In Fig. 5, these
switches are nodes q and s.
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Between every pair of overlapping regions, the reconfiguration algorithm should
select one frontier node as router node. A router between two regions is the only valid
communication path between them. In the graph in Fig. 5 there is only one frontier
node between each pair of overlapping regions. They are labeled as q and S.

Fig. 5. Splitting the graph into correct regions.

If there are multiple frontier nodes in one region, only one must be elected as the
router. Note that frontier nodes can choose the router by themselves. A distributed
and independent election can be done if every frontier node applies the same
algorithm. We select as router node the one with lower UID.

We define a virtual inter-region graph as the graph composed of all root nodes, all
router nodes, and the paths interconnecting them. A virtual graph is an abstraction of
the incorrect information in a graph in order to simplify the dynamic reconfiguration.
We will manipulate the virtual graph until a correct graph is obtained. Fig. 6 shows
the virtual graph corresponding to the example shown in Fig. 5.

Fig. 6. Virtual inter-region graph. The orientation of each link in the virtual graph matches the
orientation of the complete path it represents (composed of several links in the graph).

4.3 Step 3: Correcting the Virtual Graph

A virtual graph resulting from an incorrect graph is also incorrect. In particular, it has
as many root nodes as the original graph. Therefore, it is necessary to modify the
graph to make it correct by changing the orientation of some links. In order to achieve
it, we identify a spanning tree of the virtual graph. The spanning tree is computed
using a distributed algorithm proposed by Perlman [16]. In this algorithm, root and
router nodes exchange tree-position packets. When the spanning tree computation
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finishes, the incorrect virtual graph has evolved into a correct one because only one
primary root node remains in the virtual graph. The other ones are no longer root
nodes, and will be referred to as secondary root nodes. The primary root node does
not modify its position in the virtual inter-region graph. On the other hand, secondary
root nodes reverse the orientation of the path to the router close to the primary root
node. If a secondary root node can be attracted by several routers, it will go toward
the router with the lower UID. Fig. 7 shows the virtual graph in Fig. 6 once it has
been corrected.

Fig. 7. Correct virtual graph. After computing the spanning tree of the virtual graph, it evolves
into a correct graph completely connected according to the up*/down* routing algorithm.

4.4 Step 4: Correcting the Real Graph

Once the virtual inter-region graph has been corrected, path orientation changes must
be propagated to physical links. Some conditions should be met when changing the
orientation of the links in the network. Every change in link orientation should be
carried out without disconnecting the routing algorithm. As a consequence, only the
orientation of the links connected to root or break nodes can be changed. Otherwise,
some nodes may be unreachable after changing a link orientation. Fig. 8 shows an
orientation change in a link that is not connected to any of these nodes.

Taking into account the previous restriction, the real graph is corrected as follows.
Each secondary root node begins its movement, exchanging its position with a
neighboring node; this one exchanges its position with the following node, and so on.
The movement of a root node requires the individual and sequential direction reversal
of the corresponding links. From now on, we will use the expression "to move the
root/break node" although in fact we are reversing link direction assignment.
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Break node Root node Break node Root node

DS

Root node Break node

Fig. 8. Orientation change in a link not connected to root or break nodes. After the change in
the lower link orientation, the network is split into two disconnected regions. There are two
break nodes and two root nodes in the same cycle.

The movement of a secondary root node does not produce any change in the routing
tables and therefore it does not cause deadlocks, as shown in Fig.9. In up*/down*
routing, deadlocks are avoided by the restrictions imposed on the break node.
Therefore, the position of the root node is irrelevant. For this reason, an orientation
change in a link connected to a root node does not affect the routing tables. We can
even perform the movement across several nodes in a single step.

Root node Root node

[

Break node Break node

Fig. 9. Root node movement. The movement of the root node does not affect the routing tables.

There is a special situation when a root node reaches a break node. As shown in Fig.
10, a moving root node cannot move over a break node because a cycle arises and the
root node disappears.

Root node
Break node

Fig. 10. Movement of a root node over a break node. A cycle appears in the directed graph
after changing the orientation of the leftmost link. The resulting graph has no root node.
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With this restriction, it is possible that there is no valid path between the secondary
root node and the router node that must be reached. In Fig. 5, node @ must reach node
q but break nodes ¢, g, and h avoid it. The solution consists of previously moving as
many break nodes as necessary, keeping them away from the path followed by the
root node. In [17], it is shown how break node movements are performed without
producing deadlocks. This movement has a high associated cost, requiring the
synchronization of several nodes. For this reason, the path that minimizes the number
of break node movements must be chosen. The secondary root node determines this
path. Fig.11 shows the initial real graph once that it has been corrected.

Fig. 11. Corrected real graph. Node a can be moved through several paths. The selected path
only needs to move the break node labeled as h.

4.5 Step 5: Updating the Routing Tables

When a switch detects a change in the topology of the network, it triggers a
reconfiguration process through a control message. This message is propagated to
every node in the network by flooding. Each node will mark its routing table as
invalid, although it will still use it.

The reconfiguration process defines the correct regions in the graph. Then, each node
can generate its inter-region routing table. The process finishes if the reconfiguration
process defines only one correct region in the graph. Otherwise, if several correct
regions appear within the graph, then it is necessary to determine the inter-region
routers and to correct the virtual graph. Then, each router node provides the topology
of its region to the neighboring regions. At this time, it is possible to generate the
complete routing table at each node, because it knows the whole topology.

When some components are removed from the network, routing tables must be
updated so that messages are not routed toward nonexistent components. If a message
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blocks because it requested a nonexistent component before routing tables were
updated, it may happen that the only possible action consists of discarding that
message. Note that the updated routing function may not offer any path to some
messages. In these cases, it could be necessary to send a notification message to the
source node.

5 Conclusions

Several distributed applications demand high system availability. Additionally,
multimedia applications require some quality of service (QoS) guarantees. In
particular, audio and video streams must be delivered within some deadline, also
minimizing jitter. When executed in a local environment, distributed multimedia
applications require high-speed LANs with point-to-point links. Unfortunately, high-
speed LANs may suffer frequent reconfigurations due to the activation and
deactivation of switches and hosts, link remapping, and component failures. In these
cases, a distributed reconfiguration algorithm analyzes the topology, computes the
new routing tables, and asynchronously downloads them to the corresponding
switches.

Current reconfiguration algorithms stop user traffic during routing table update to
avoid deadlocks. As a consequence, these networks are not suitable to support
multimedia applications because message latency may increase by three orders of
magnitude, and consequently QoS may no longer be guaranteed.

In this paper, we have proposed a new distributed dynamic reconfiguration algorithm
(DRA) that asynchronously updates routing tables without stopping user traffic. This
algorithm is valid for any topology and guarantees the absence of deadlocks during
the reconfiguration process [17]. After introducing some graph concepts, this paper
analyzes the activation and deactivation of network components, showing how to
build a network graph and update routing tables in such a way that no deadlock can
arise. However, the routing algorithm may be disconnected, i.e., some parts of the
network may be unreachable. Then, we propose a distributed protocol that produces a
sequence of partial routing table updates, which are able to reconnect the routing
algorithm. We show that the routing algorithm at every intermediate step is deadlock-
free, and that the final routing algorithm correctly routes messages between every pair
of nodes.

6 Future Work

In this paper, we have selected as primary root node the one with lower UID.
However, more elaborated approaches to select the primary root node could be based
on minimizing the cost associated with node movement, paying special attention to
the number of break nodes to cross.
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Also, we plan to formally state the dynamic reconfiguration protocol (DRP) to check
reliability and deadlock-freedom.

We also plan to evaluate the performance of our algorithm, comparing it with
conventional techniques such as the ones used in Autonet or Myrinet. Then, we will
quantify the total reconfiguration time, determining whether the additional overhead
introduced is cost-effective or not.

Finally, we plan to modify this simulator to support adaptive routing [18]. We expect
that the influence of the reconfiguration process on network performance will
decrease when using adaptive routing.

References

10.

11.

12.

13.

14.

15.

16.

Schroeder M.D. et al.: Autonet: A high-speed, selfconfiguring local area network using
point-to-point links. IEEE Journal on Selected Areas in Communications, vol. 9. n°® 8.
October 1991.

Felderman R. E., et al.: Atomic: A High Speed Local Communication Architecture. J.
High Speed Networks, vol. 3, n° 1, pp. 1-29, 1994.

Boden N. et al.: Myrinet: A gigabit per second LAN. IEEE Micro. February 1995.

Horst R.W.: Tnet: A reliable system area network. IEEE Micro. February 1995.
Rodeheffer T. L., Schroeder M. D.: Automatic Reconfiguration in Autonet. SRC Research
Report 77. September 18, 1991.

Owicki S. S., Karlin A. R.: Factors in the performance of AN1 Computer Network. SRC
Research Report 88. June, 1992.

Knightly E. W., Zhang H.: D-BIND: An accurate traffic model for providing QoS
guarantees to VBR traffic. IEEE Trans. on Networking, vol. 5, n° 2. April, 1995.

Pfister G. F.: In search of clusters. Prentice Hall, Englewood, NJ 1995.

Pakin S., Lauria M., Chien A.: High performance messaging on workstations: Illinois fast
messages on Myrinet. Supercomputing 95. November 1995.

Casado R., Caminero M. B., Cuenca P., Quiles F. J., Garrido A., Duato J.: A tool for the
analysis of reconfiguration and routing algorithms in irregular networks. Lecture Notes in
Computer Science, vol. 1362. pp. 159-173. Proc. of the CANPC'98. USA. February 1998.
Qiao W., Ni L. M.: Adaptive routing in irregular networks using cut-through switches. In
proceedings of the 1996 International Conference on Parallel Processing, August 1996.
Silla F., Malumbres M. P., Robles A., Lépez P., Duato J.: Efficient Adaptive Routing in
Networks of Workstations with Irregular Topology. Workshop on Communications and
Architectural Support for Network-based Parallel Computing. February 1997.

Silla F. Duato J.: Improving the efficiency of adaptive routing in networks with irregular
topology. International Conference on High Performance Computing. December 1997.
Abali B.: A Deadlock Avoidance Method for Computer Networks. Proc. of the
CANPC'97. USA. February 1997.

Dally W.J., Seitz C.L.: Deadlock-free message routing in multiprocessor interconnection
networks. IEEE Transactions on Computers, vol. C-36, n® 5. May 1987.

Perlman R.: An algorithm for distributed computation on a spanning tree in a extended
LAN. Ninth Data Common Symp. Whistler Mountain. British Columbia. Sept.10-13.
1985. pp. 44-53.



180  Rafael Casado et al.

17. Casado R., Quiles F.J., Sdnchez J. L., and Duato J.: An Efficient Protocol for Dynamic
Reconfiguration in Irregular Networks. Technical Report. TR-DI1-UCLMO98.

18. http://raap.info-ab.uclm.es/public/techreports/techs.htm

19. Duato J.: A new theory of deadlock-free adaptive routing in wormhole networks. IEEE
Trans. on Parallel and Distributed Systems, vol. 4, n° 12, pp. 1320-1331. December 1993.



Implementing Application-Specific Cache-Coherence
Protocols in Configurable Hardware

David Brooks and Margaret Martonosi

Dept. of Electrical Engineering
Princeton University
{dbrooks,mrm} @ee.princeton.edu

Abstract. Streamlining communication is key to achieving good performance
in shared-memory parallel programs. While full hardware support for cache
coherence generally offers the best performance, not all parallel machines
provide it. Instead, software layers using Shared Virtual Memory (SVM) can
be built to enforce coherence at a higher level. In prior work, researchers have
studied application-specific cache coherence protocols implemented either in
SVM systems or as handlers run by programmable protocol processors. Since
the protocols are specialized to the needs of a single application, they can be
particularly helpful in reducing the long latencies and processing overhead that
sometimes degrade performance in SVM systems. This paper studies
implementing application-specific protocols in hardware, but not via an
instruction-based protocol processor as is typical. Instead, we consider
configurable implementations based on Field-Programmable Gate Arrays
(FPGAs). This approach can be faster than software-based techniques and less
expensive than some hardware-based techniques. We study one application,
appbt, in detail, including a VHDL-level design of the configurable protocol
design. We sketch out approaches for other applications as well. Implementing
protocol operations in configurable hardware improves communication
performance by roughly 11X for a 32-node system. While overall speedups are
a more modest 12%, our method is promising because of its flexibility and
because it offers a new way of harnessing configurable hardware at the network
interface, where it already exists or could be easily added to current systems.

1 Introduction

Writing shared-memory parallel programs is thought to be easier than message-
passing programs because of the simplified memory and communication model
involved. Supporting fully cache-coherent shared-memory in hardware, however, can
be expensive. Some systems instead opt to implement a shared-memory programming
model using a software-based shared virtual memory (SVM) system [1].

Whether implemented in hardware or software, the key to good shared memory
performance lies in the protocol implemented. To address this, prior research has
considered implementing application-specific protocols. In such approaches, the
cache coherence protocol is specialized to the communication needs of a particular
program. Such protocols are possible in cases where the coherence mechanism (either
hardware or software) can be changed or customized at program run-time. Past work

A. Sivasubramaniam, M. Lauria (Eds.): CANPC'99, LNCS 1602, pp. 181-195, 1999.
© Springer-Verlag Berlin Heidelberg 1999
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has evaluated such protocols running in SVM software on the main compute nodes
themselves, or in handler code running on separate protocol co-processors.
Our work investigates a third option: implementing application specific protocols
using a “configurable” hardware approach based on Field-Programmable Gate Arrays
(FPGAs). These SRAM-based chips can be infinitely reprogrammed just by
downloading a new stream of bits to rewrite configuration settings. Once configured,
they behave like hardware, however, with a gate-based, rather than instruction-based,
interface to their functionality. Since current network interface boards like Myrinet
already contain FPGAs (for other purposes) it seems natural to evaluate their utility
for application-specific protocols. Only small changes to existing network interface
boards would be needed to make the proposed ideas feasible.

Studying shared memory approaches and prior research in application-specific

protocols we note:

1) Flexible protocols can be conveniently implemented in configurable hardware,
rather than in software.  This facilitates overlapping computation and
communication and can also accelerate the protocol handlers themselves.

2) Coherence protocols have characteristics amenable to FPGA computing: bit
manipulation, hardware parallelism, and simple integer computations.

3) Existing tools designed to facilitate developing application specific protocols in
software can be retargeted to automatically synthesize hardware implementations.

4) The network interface boards that interconnect compute nodes typically have
several FPGAs on them anyway. Only minimal industry cooperation is needed to
get more space for implementing protocols.

With these observations in mind, this paper explores the possibility of implementing

an application-specific protocol processor in configurable hardware. A detailed study

for one application, appbt, showed an 11x speedup in communication time compared
to other implementations. Other applications show viability as well.

Sections 2 and 3 discuss previous research on application-specific coherence

protocols and why we believe configurable hardware is a viable alternative. Section 4

gives an in-depth description of our proposed architecture. In Section 5, we outline

the methodology for evaluating our architecture. Section 6 evaluates the feasibility of
this new method with a detailed case study using appbt. Section 7 investigates
additional parallel applications with general descriptions of possible implementations.

Section § gives our conclusions.

2 Why Application-Specific Protocols?

Recently, application specific protocols have been recognized as a valid means of
improving protocol performance. Several different strategies have been proposed for
their implementation. One approach to implementing application-specific coherence
protocols has been the development of Tempest by the Wisconsin Wind Tunnel
Project [2]. Tempest provides a standard, system-independent parallel programming
user/system interface that offers programmers access to a variety of different
communication mechanisms, including active messages, bulk data transfer, virtual
memory management, and fine-grain access control [3].

Tempest defines the architecture of a communication interface for shared-memory
parallel programs; Blizzard is one implementation of that architecture [4]. Blizzard
runs the coherence protocol code in software on each of the main compute nodes.
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Fig. 1. Proposed Design Flow

Studies with Blizzard on applications with a wide variety of communication patterns
have shown that application-specific coherence protocols can provide substantial
speedups over even carefully-tuned implementations using a stock coherence
protocol. This approach allows great flexibility in customizing the protocol to
application characteristics: everything is done in software. Naturally a major
disadvantage is that it slows down the host processor which is responsible for both
computation and protocol processing. Another speed disadvantage is that the host
processor is not physically located next to the network interface and an associated
DMA engine.

These disadvantages have spurred interest in moving functionality from the main
compute nodes down into the network interface. In some studies, such functionality is
implemented as extra handler code run by a programmable network interface
processor such as the LANai processor in a Myrinet network interface [5] [6] [7].
Other approaches have provided even more aggressive levels of hardware support, up
to full hardware cache coherence [8] [9]. Our proposal, which implements protocol
processing in configurable FPGA chips on the network interface, represents an
intermediate position between full-hardware or full-software implementations.

3 Why Configurable Hardware?

Field Programmable Gate Arrays (FPGAs) allow the hardware functionality of a chip
to be infinitely reprogrammed through a stream of configuration bits. Unlike an
EPROM, an FPGA can be reprogrammed simply by downloading new configurations
to its SRAM-based configuration memory bits. Because FPGAs are fabricated with
the same manufacturing process as CMOS SRAMs, they can be low-cost commodity
parts. The inexpensive hardware flexibility of FPGAs has led to their use in areas
traditionally associated with custom hardware. This has been especially true for rapid
prototyping and low-volume production. More recently researchers explored ways to
use FPGAs to be reconfigured within applications.

There has recently been some research interest in coupling configurable logic with the
network interface. McHenry et al. [10] have proposed an FPGA-based front-end
processor that filters information to an ATM firewall host to ensure network security.
Guillaud et al. [11] have proposed a communication interface board for PCs which
incorporates a transputer, an FPGA, and a VRAM to implement reconfigurable high
level communication services for distributed real-time data and multimedia
communication. None of these approaches have considered configurable network
interfaces with parallel computing applications in mind. Our research demonstrates
the use of configurable hardware to implement application-specific coherence
protocols within SVM systems.

Reconfigurable hardware has several unique features that are amenable to protocol
processing.  Since the protocol processing hardware is customized for each
application, all of the available resources can be used for the particular application. In
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addition, configurable hardware inherently allows extensive fine-grain parallelism.
Finally, FPGAs are well suited to the types of computation prevalent in protocol
processing: integer-oriented address calculations, counter operations, and bit-
manipulations.

One obstacle to the acceptance of an architecture like the RPP is that writing
application-specific coherence protocols in software can already be a challenge;
implementing hardware designs seems even tougher. Researchers at Wisconsin have
developed a language called Teapot which aids programmers in writing and verifying
coherency protocols [12]. We can circumvent the application-specific hardware
hurdle by implementing a VHDL backend for Teapot. This would allow the
automatic synthesis of FPGA-based hardware from a Teapot specification.

Figure 1 outlines a potential design flow for the design of an FPGA-based protocol
processor. First, the sharing patterns of the parallel application must be analyzed and
described in a language such as Teapot. The Teapot compiler would create high level
VHDL code to be passed to commercial CAD tools for synthesis into the FPGA
configuration bitstream.

4 Our Proposal: A Reconfigurable Protocol Processor

Figure 2 shows a diagram of the proposed system architecture. The reconfigurable
protocol processor (RPP) is tightly coupled to both a DMA engine and the network
interface (NI) CPU. It allows the protocol processor to closely interact with the DMA
and the NI with FIFOs serving as buffers between parts. Another advantage to this
architecture is that FPGAs are already available on some current network interface
boards [5]. Thus, realistic implementations of similar architectures are feasible in the
near-term.

The RPP system offers several performance benefits for application-specific
protocols:

Background protocol processing: Software SVM relies on the microprocessor for
protocol processing; it must stall main program execution and incur interrupt
overhead in two cases: (i) whenever a message is prepared and sent to the NI and (ii)
whenever an incoming message is received at the NI. With the RPP system, the
hardware can send or receive a message or other protocol event, process the event,
and transact with main memory, leaving the microprocessor to continue with program
computation.

o | | BLCPUT-CRPR)C) oner| | PP RPR)E)

Network Interface Board

Fig. 2. Proposed System Architecture

Network Interface Board
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Fast, Intelligent DMA: In our proposed architecture, the RPP is closely coupled to a
DMA engine. There are two major reasons why this is beneficial. First, we achieve
the benefits of fast, intelligent data transfer from the network interface directly to
memory, or vice versa. Allowing the RPP, rather than the compute node, to control
the DMA reduces the performance degradation when sending short, non-contiguous
sections of memory, because it can easily be customized for strided accesses.
Specialized processing on both sending and receiving messages: In managing
communication, the compute node is no longer limited to simple, general-purpose
protocol commands such as “Send memory location 17 to node 2,” but can issue brief,
application-specific commands such as “Send update data pattern 8”. The RPP
interprets these and expands them into a complicated message. Extremely brief
commands by the microprocessor can set the RPP at work doing complex processing.
This improves communication/computation overlap and also reduces the software
overhead of communication processing both at the sending and receiving ends.

5 Methodology

In order to evaluate the proposed reconfigurable protocol processor, we devised a
simulation environment that allows us to realistically compare applications running on
an RPP system to those running on a software SVM system. Several simulation
models were developed to achieve this. First, VHDL designs and simulations were
used to verify our design and to determine feasible clock speeds. Our second model
simulates the performance of the system when a particular application runs with its
RPP configured for that application. Finally we simulate the performance of the
system when an application uses software-based coherence.

5.1 VHDL RPP Model

In the final system, a Teapot-VHDL translator would facilitate RPP design. Here,
however, we hand-designed the RPP in order to get performance estimates for it. To
simulate RPP performance for a given application, the RPP is first designed at a
register-transfer level, and then state transition diagrams are constructed to determine
how many cycles various protocol functions will take to execute. Finally, a full
VHDL design determines the cycle time for the RPP. Section 6.3 elaborates on the
VHDL design for the detailed appbt case study.

5.2 Multiprocessor Application Simulator

The high-level application simulator is based on MINT, a multiprocessor, event-
driven simulator [13]. MINT simulators accept an application program as input and
simulate the program’s performance, using a user-defined back-end. MINT passes all
read, write, and other relevant events to the back-end. Here, we simulate the
operation of coherence protocols as they service memory requests and maintain
coherency. In addition, user-generated events simulate other functionality, such as
bulk-data transfers or protocol-specified active messages.
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Fig. 3. Overall structure of an Appbt iteration, showing computation and communication. This
structure describes all iterations after the first iteration.

5.3 System Timing

Protocol Timing: We consider three types of costs in simulating the message
handlers for the SVM system: (i) a handler dispatch of 150 processor cycles to save
the machine state and start an interrupt, (ii) the handler functions incur latency to start
each transfer or receipt of data from the network interface, and take time to actually
transfer data over the PCI bus. (iii) the processor takes a small amount of time to
perform synchronization operations within message handlers — for instance, the
clearing or setting of a counter. As a low estimate, we charged the message handler 1
cycle for each counter clear and 2 cycles for each counter increment.

Baseline Compute Node Timing: For our baseline system, we assume a
microprocessor running the MIPS instruction set at 300 MHz. The processor has an
on-chip write-through data cache with 32-byte lines and 1024 entries. Cache misses
take 20 processor cycles to fill, using the memory bus. The baseline configuration
utilizes 32 processors in a grid interconnect network.

We also assume a 33 MHz, 64-bit PCI bus serving as the I/O bus for each processing
node [14]. This is consistent with the speeds of current Myrinet network interface
boards. We assume that each PCI transaction is limited to at most 64 PCI cycles.
Reads or writes to sequential addresses need no time between sending or receiving 64-
bits of data. Between reads to non-consecutive addresses, a turn-around cycle is
required between the cycle where the master drives the address on the bus and the
cycle where the memory responds with data. Between writes to non-consecutive
addresses, no turn-around cycle is needed because we utilize the PCI “Fast Back-to-
Back Transactions” functionality [15].

Network Timing: Our network timing assumes a 2D mesh-connected network with
wormhole routing. We assume 100ns per hop for the head of the message to establish
a path, and 20ns per hop for subsequent 16-bit chunks. To limit simulation time, we
simulate a contention-free network because previous work has shown that network
contention is not a major bottleneck in these applications [16]. We also assume a
device driver overhead of 40 processor cycles for each transmission or receipt of data
from the microprocessor to the network interface or the RPP.
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6 A Case Study: Appbt

To demonstrate our idea, we have performed a detailed design and evaluation for an
RPP customized for the appbt program. Appbt, one of the NAS parallel benchmarks,
is an iterative, three-dimensional, computational fluid dynamics application [17]. For
each iteration, it performs a number of calculations to compute new values for each
grid point. Some calculations rely on values for that grid point only, while other
calculations also utilize values that are one or two grid points away. The “value” of
each grid point consists of 90 different double precision floating point numbers that
summarize the state of the fluid being studied. The Wisconsin Wind Tunnel (WWT)
project has optimized appbt in order to measure the potential speedups from
application-specific coherence protocols on a parallel shared memory system. We
used their version of appbt as a starting point for our research.

Speedups from our reconfigurable protocol processor only affect the communications
aspects of program execution time, because we are only focusing on improving the
communication handlers. Thus, we next describe these communication patterns in
detail.

6.1 Appbt Communication

Figure 3 shows a flowchart of communication in appbt. There are two major types of
communication: during the Gaussian elimination phase and communication during the
update phase.

Gaussian elimination: Gaussian elimination phases occur three times per iteration to
transmit newly calculated values in the x, y, and z directions for both “forward
elimination” and “back-substitution.” Forward elimination transmits newly calculated
values to dependent grid points on the right. Back substitution transmits values to the
left. The RPP has separate communication handlers for each of these two types of
communication.

Update Phase: The update phase of communication occurs shortly before the end of
each iteration. Each node sends updates to all neighboring nodes. The updates are the
entire face, two grid points deep, shared between a node and its neighbor. Since
these faces are not needed until the beginning of the next iteration, we hide some
inter-node communication delay behind the remaining computation time. We have
implemented separate communication handlers for each update axis (x, y, and z).

Non-Overlapped

Communication Comm. Time

Time \€ ‘
Computation /]\&

Time Ovcr]app.cd
Comm. Time

Total Execution Time

Blizzard RPP

Fig. 4. Communication in Blizzard vs. RPP.
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6.2 Appbt communication speedup methods

In this section we describe the enhancements that our reconfigurable protocol
processor incorporates in order to improve communication time in appbt. In the
original Blizzard systems, all protocol handling is performed by the compute node;
protocol handling and compute time cannot be overlapped. As shown in Figure 4, the
RPP decreases communication time in two main ways: (i) decreasing the overall
amount of communication time, (ii) overlapping some communication with
computation. Note the computation time stays constant with both systems. Only the
communication time is decreased and overlapped with computation. In the following
paragraphs we explore in detail the enhancements that the RPP uses to decrease the
communication time.

Background message processing: In some cases, messages sent to a processor may not
be needed immediately. For example, update messages are not needed until the
beginning of the next iteration. In such cases, computation may continue before all
the messages have arrived. With the software implementation, each message causes
the processor to stop computation and handle an interrupt. With the RPP
implementation, the processor never has to process an intermediate interrupt to
service a message. Rather, the RPP deals directly with memory, placing the arriving
updates in their appropriate memory locations. A counter, discussed below, notifies
the processor when all updates have arrived.

Fast, Intelligent DMA: As previously discussed, the close association of the RPP with
the DMA engine allows intelligent, application-specific DMA transfers, particularly
smaller, non-contiguous transfers. In appbt, combining smaller messages into larger
ones involves accessing multiple non-contiguous sections of memory. With the RPP,
such non-contiguous memory accesses are simple. The RPP splits messages into their
component parts, does some simple address calculations while waiting for the current
DMA operation to complete, and feeds data and addresses to the DMA engine until
the message is complete. Using the RPP also decreases message size (since the
receiving RPP can also calculate some address and length information on its own).
Synchronization Squashing: Regardless of whether the update messages are sent as
single grid points or entire faces, any given node will expect multiple messages from
multiple processors before it can proceed with more computation. In software,
synchronization for this is implemented with a software counter for the X, y, and z
directions. The data received is unused until the counter indicates that all the data for
that dimension has been received.

With the RPP much of this processing can be avoided. When the program begins, the
microprocessor sends a message to the RPP telling it how many updates to expect
from each dimension. Since the communication is totally static, this can be fixed
through the entire execution. Whenever the RPP receives an update message, it sends
the update data to memory. But instead of incrementing a software counter, the RPP
simply increments its own version of the counter located on chip. When the counter
reaches the critical value, the RPP knows that all updates for that dimension have
been received, so it writes the counter value to main memory. Thus, many
intermediate reads and writes to increment the counter are reduced to a single write
when the data is ready.

Forward Elimination: In a software-based implementation, each data transmission
during the forward elimination stage actually consists of 11 different messages, each 5
doubles long. With the RPP all the data may be sent as one message that the
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receiving RPP splits to place in the appropriate areas of memory. This is possible
because the sending and receiving RPPs can perform address calculations and control
the transfer of data from memory to the NI and vice-versa.

Update: During the end-of-iteration update messages, the Blizzard implementation
forwards each grid point as separate message of 5 doubles. Again the RPP can be
configured to accept a much longer message, break it into its component parts, and
write the appropriate data to memory. In our implementation, the RPP sends the data
in whole-face chunks, so that updating a neighboring processor takes two messages.
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Fig. 5. Block diagram of Send datapath.

6.3 VHDL Design of RPP

To get accurate results with our simulator, a full VHDL implementation of the RPP
was necessary in order to determine the speed of our design when tailored for appbt.
In order to meet pin and CLB' constraints, we made a decision to split the design into
one FPGA for sending and one FPGA for receiving. However, with the denser FPGA
technology available today, the entire design would easily fit onto one chip. Figure 5
shows a block diagram of the send datapath that we used for appbt. The control logic
consists of the finite state machines for the five send handlers and five receive
handlers. The simplest handlers consist of eight sequential state transitions, while the
more complex handlers have a few more states with loops. The receive datapath is
very similar and much of the logic could be shared. However, the control logic made
the design too large to fit onto the largest FPGA available for our CAD tools. A 40-
bit version (capable of 40-bit address calculations) was implemented in VHDL and
synthesized using FPGA Express [18]. ViewSim was used for simulation [19]. Xilinx
place and route tools were then used to generate bitstreams and determine cycle times
[20]. See Table 1 for results.

' A configurable logic block (CLB) is the basic unit of which FPGAs are comprised. It can
implement roughly 10 simple gates of logic and includes 2 flip-flops for state.
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Cycle Time | Clock Rate Occupied CLBs F&G Function Gens.

Send 61.4ns 16.3 Mhz 558 835
Receive 60.1ns 16.6 Mhz 496 757

Table 1. Cycle times from xdelay with 4013EHQ240-2

6.4 Simulation Results

In this section, we discuss the results of our simulations with the application appbt. In
the first subsection we explore in detail the results from a baseline system. In the
following subsections we investigate the effect of varying the system parameters.

Baseline System. The default problem size we consider is a 12x12x12 array with 60
iterations. For this datasize, we achieved a communication time speedup of 10.84 for
the RPP system compared to an SVM system like Blizzard. In terms of the definitions
introduced in Figure 4, this means that the non-overlapped communication time with
the RPP system is nearly 11 times smaller than the time the SVM system spent on
communication. Part of the reason for this speedup is that a large portion of the
communication time was overlapped with computation. For appbt, the amount of
overlap varies by processor. Processors in the center of the network have more update
messages. Update messages have more potential for overlap because there is
additional computation time available to hide communication delays while the
program is in the ‘“Re-compute right-hand sides” phase (see Figure 3). For the
baseline system, 45.7% of the communication was overlapped on average. 52.6% of
the total communication time for update messages were overlapped while 28.5% of
the total communication time for Gaussian elimination messages were overlapped.
Because all of our speedup comes via improved communication, the fraction of
overall execution time that appbt spends in communication is critical. With a
software version, 11.6% of the overall time is spent in non-overlapped inter-node
communication. The RPP’s enhancements bring this number down to 1.2%. This
reduction in communication time gives the RPP system a speedup of 1.12X over an
SVM system for overall program execution time. In comparison, an ideal system that
assumes all communication occurs instantaneously, would achieve a speedup of
1.13X over SVM.
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While a total execution time improvement of 12% is not phenomenal, it is important
to note that appbt is a full benchmark, not just a kernel with heavy communication. In
this paper we focus on the communication aspects of the application—the portion of
the application that the RPP succeeds in speeding up significantly—while keeping in
perspective that the overall execution time is important as well.

RPP Speedups for varying number of processors. In our baseline system, we
assume 32 processors, but smaller configurations are also common for low-end
parallel processing systems for which the RPP might targeted. We compare the SVM
and RPP protocol processing methods on a common appbt input set while varying the
number of processors in the system.

Figure 6 shows the non-overlapped communication time in appbt for SVM and the
RPP. From this figure we can see that for 32 processors there is a communication
time speedup of 10.8. As we move down to 2 processors, the speedup increases to
13.5, a change of 25%. The fluctuations in the communication time are due to the
way that each processor’s subcube is partitioned. The size and shape vary as we
change the number of processors, and this causes significant changes in the
communication patterns. These increases in speedup correlate to the amount of
communication that can be overlapped. For 32 processors, the overlap averages
45.7%. As we move down to 8, 4, and 2 processor networks the percentage of
overlapped communication rises into
the 70s.

For the overall execution time speedup the amount of time that is spent in
communication is critical, because this is the portion of the overall program execution
that is reduced by protocol operations. As we increase the number of processors in the
system, the amount of communication increases. For example at 2 processors SVM
spends 1.5% of its total execution time in communication, but at 32 processors this
number rises to 11.6%. Thus, as we move to systems with more processors, the RPP
system achieves greater overall execution time speedups. For 2 processors, the
execution time speedup was just under 1.02X, but at 32 processors this increases to
1.12X.

RPP Speedups for varying microprocessor speeds. Our baseline system, which
assumed 300MHz, is about the clock rate of many -current-generation
microprocessors. It is interesting to explore the speedup that the RPP would obtain on
faster or slower microprocessors.
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Fig. 6. Non-overlapped communication time for RPP and Blizzard when varying the
number of processors and the processor speed (avg num. Kcycles per iteration).
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Figure 6 shows appbt’s non-overlapped communication time for the SVM and RPP
systems while varying the speed of the host processors. As we increase the speed of
the microprocessors, the amount of non-overlapped communication time increases for
both the RPP and SVM system. Since we have assumed the RPP cycle time to remain
constant while a software approach benefits from clock rate improvements, the RPP is
slower relative to the SVM system at high clock speeds. We would expect, however,
that future generations of FPGAs would allow the RPP to increase in performance
with the microprocessor. Furthermore, limitations of the 33MHz PCI bus become a
factor at the high clock speeds. For these reasons our communication speedup varies
considerably — from 25.2 for 100MHz processors to 6.9 for 600MHz processors.

The overall execution time speedup vs. SVM increases as we move to higher clock
rates. For example, from 100MHz to 600MHz the speedup increases from 1.09 to
1.15. This is because the faster processors decrease the amount of time spent on
computation. Hence, communication plays a larger role in the overall program
execution time at higher clock speeds and this benefits the total execution time
speedup. For SVM’s 100MHz system, the fraction of time in communication was
9.4%. This increases to 14.8% for the 600MHz system. For the RPP, these numbers
drop to 0.4% and 2.4% respectively.

7 Other Applications

The main focus of our discussion so far has been on the parallel application, appbt.
The RPP techniques that were successful in improving appbt’s execution time are also
applicable to a wide range of applications. Without going to the same level of detail,
this section discusses possible RPP implementations for other applications.

7.1 EM3D

EM3D is another parallel benchmark application that models the propagation of
electromagnetic waves through objects in three dimensions [21]. The program
contains a set of E nodes, which represent electric fields, and H nodes, which
represent magnetic fields. E and H nodes are arranged in a bipartite graph with
directed edges linking E and H nodes that depend on each other. During each
iteration, E nodes are updated based on the weighted values of neighboring H nodes
and vice-versa. A common parallel implementation divides regions of E and H nodes
up into computing node segments. Communication between processors occurs when
E and H nodes are connected by a “remote edge”, meaning that the neighboring E and
H nodes are on different processors.

During the first iteration, the communication pattern has not been established so a
general purpose protocol must be used. After the first iteration of EM3D, the sharing
pattern between processors has been set and will stay the same for all subsequent
iterations. That is, when an E or H node is updated, there is a known list of compute
nodes that need to be sent a message with the updated data. At this point, application-
specific update protocols can take over to enhance communication efficiency. The
application-specific protocol for EM3D updates all remote nodes at the end of each
half-iteration [4]. This approach made sense there because the processor is busy
calculating new values of the current nodes, so it has no free CPU time available for
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protocol processing. In addition, leaving all of the updates to the end of the half-
iteration allows one large message to be sent to each processor that needs update data.
With an RPP most protocol processing could be entirely overlapped with
computation. After each node has been calculated, the RPP sends that update
message to the dependent processing node. The closely-coupled DMA engine allows
efficient transfer of these small messages. Groups of messages are packaged and sent
to a specific processor as in appbt. Furthermore, the RPP performs all protocol
synchronization support which includes deciding when all incoming dependent nodes
have been received. This type of synchronization is very efficient in FPGAs with bit
manipulations.

Chandra, et al. have provided an in-depth analysis of communication and computation
time for shared-memory and message-passing versions of EM3D [22]. The analysis
notes that a Blizzard implementation running application-specific protocols allows the
shared-memory version to perform equivalently with the message-passing version.
Using this conclusion we roughly estimate the amount of speedup that the RPP could
achieve. For the main loop there would be 26.5M cycles of computation and 40M
cycles of communication. Thus approximately 26.5M cycles of communication
would be overlapped with computation. The remaining 13.5M cycles of
communication would likely be reduced by RPP enhancements. However, as a low-
estimate to potential speedup we assume that these non-overlapped communication
cycles remain the same. This results in a total execution time improvement of about
51% for the RPP over Blizzard. The increased amount of time spent in
communication explains why EM3D promises more improvement on the RPP than

appbt.
7.2 Unstructured

Unstructured is based on a computational fluid dynamics application that uses an
unstructured mesh to model a physical structure [23]. Nodes make up the structure of
the mesh and are connected by edges, when in pairs, and by faces, when in groups of
three or four. A common parallel implementation groups related nodes together and
then partitions edges onto various processors. Computation involves iterative loops
over nodes, edges, and faces, and thus edges and faces that span processors will
require shared data to maintain coherency. Like EM3D, the communication
dependency pattern is fixed after the first iteration.

Because of the extensive amount of time spent in communication, unstructured is
well-suited to an RPP implementation. The RPPs could track inter-node dependency
synchronization for each node in the system. The RPP would count when incoming
dependencies have cleared and when all messages have been sent out for a particular
node. The RPP would also send update messages in the background. After each node
is ready to be sent out, the processor would send a single message to the RPP, which
would then send dependent data to the correct processors. Additional background
processing would be possible as the RPP could send update messages for nodes in the
edge-loop while the processor does computation in the face-loop.
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8 Conclusion

This paper presents a new architecture for implementing application-specific cache
coherency protocols. This study (i) identifies a new, easily-adopted use of
configurable hardware in mainstreams systems, and (ii) provides benchmark
evaluations characterizing both communication behavior and whole program
performance. We feel that our RPP architecture hits a performance/cost sweet spot
between software and custom hardware approaches. With little additional hardware
expense and design time, an RPP-style architecture could be implemented on many of
today’s high-speed network cards. Our approach speeds up communication time in
the appbt application by a factor of 11X. For completeness, we have also considered
whole-program performance, rather than just the individual protocol handlers; our
whole-program performance improvements of 12% are also significant. In exploring
other applications, we have identified several that show the potential for even more
sizable performance improvements.

References

1. K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory Systems. ACM
Transactions on Computer Systems (Nov. 1989), vol. 7, no. 4, p. 321-359.

2. Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon: User-
Level Shared Memory. Proc. 21st Annual Int. Symposium on Computer Architecture, April
1994.

3. M. Hill, et al. Tempest: A Substrate for Portable Parallel Programs. COMP/CON Spring
95.

4. Babak Falsafi, Alvin R. Lebeck, et al. Application-Specific Protocols for User-Level
Shared Memory. Supercomputing ‘94, November 1994.

5. Nanette J. Boden, et al. Myrinet — A Gigabit-per-Second Local-Area Network. [EEE-
Micro, Vol. 15, No. 1, pp. 29-36, Feburary 1995.

6. Angelos Bilas. Improving the Performance of Shared Virtual Memory on System Area
Networks. Technical Report #TR-586-98, Princeton Computer Science Dept., August,
1998.

7. C. Liao, et al. Monitoring Shared Virtual Memory on a Myrinet-based PC Cluster. 12th
ACM International Conference on Supercomputing (ICS). July, 1998.

8. Robert W. Pfile. Typhoon-Zero Implementation: The Vortex Module. University of
Wisconsin-Madison, August 31, 1995.

9. Mark Heinrich, et al. The Performance Impact of Flexibility in the Stanford FLASH
Multiprocessor. Proc. 6" Int. Conference on Architectural Support for Programming
Languages and Operating Systems. San Jose, CA, October 1994.

10. J.T. McHenry, et al. An FPGA-based coprocessor for ATM firewalls. Proc. 5" Annual
IEEE Symposium on Field-Programmable Custom Computing Machines, April 1997.

11. J.-F. Guillaud, et al. A PC/ATM interface accelerator using reconfigurable technology.
Proc. of the SPIE, vol. 2608, pp. 134-45. 1995.

12. Chandra, et al. Teapot: Language Support for Writing Memory Coherency Protocols.
SIGPLAN Conference on Programming Language Design and Implementation (PLDI),
May 1996.

13. Jack E. Veenstra and Robert J. Fowler. MINT Tutorial and User Manual. Technical Report
452, Computer Science Department, The University of Rochester, June 1993 (Revised
August 1994).

14. “PCI Local Bus Specification,” PCI Special Interest Group, Hillsboro, Oregon, April 1993.

15. “Techniques for Increasing PCI Performance”, Intel Co.,Sep. 1997.



16.

17.

18.
19.
20.
21.
22.

23.

Implementing Application-Specific Cache-Coherence Protocols 195

W. Fang, et al.. Contention and Queueing in an Experimental Multicomputer: Analytical
and Simulation-based Results. TR-508-96, Princeton Computer Science Department, Jan.
1996.

Bailey, et al. The NAS Parallel Benchmarks. TR RNR-91-002, Ames Research Center, Jan.
1991.

FPGA Express Version 2.0, Synopsys Co.

Workview Office Version 7.3, Viewlogic Co.

XACTstep Foundation Series F1.3 Software, Xilinx Co.

D. E. Culler, etal. Parallel Programming in Split-C. Supercomputing 93, Nov. 1993.
Chandra, et al. Where is Time Spent in Message-Passing and Shared-Memory Programs?
6th Int. Conf. on Architectural Support for Prog. Languages and Operating Systems,
Oct.1994.

S. Mukherjee, et al. Efficient Support for Irregular Applications on Distributed-Memory

th

Machines. 5" Symposium on Principles and Practices of Parallel Programming, July 1995.



Supporting Shared Memory and Message
Passing on Clusters of PCs with a SMiIiLE

Wolfgang Karl, Markus Leberecht, and Martin Schulz

Lehrstuhl fiir Rechnertechnik und Rechnerorganisation, LRR-TUM
Institut fiir Informatik, Technische Universitat Miinchen
{karlw,leberech,schulzm}@in.tum.de
http://wwwbode.in.tum.de/Par/arch/smile/

Abstract. With the rise of fast interconnection technologies and new
concepts to utilize them without operating system interaction (like VIA
[1]), compute clusters are becoming increasingly commonplace. Most of
the interconnection networks focus only on message passing as their
prime programming model neglecting the large code basis for shared
memory. However, by utilizing the Scalable Coherent Interface (SCI)
[19] with its ability to transparently perform remote memory operations,
it is possible to support both efficient message passing and transpar-
ent shared memory on one single platform. This introduces a previously
unknown flexibility into the cluster architecture.

1 Introduction

Networks of workstations (NOWSs) have become widely adopted and increasingly
popular as platforms for parallel processing. For example, the use of parallel pro-
gramming libraries like PVM [7] supports parallel applications within such an
every-day computing infrastructure consisting of powerful desktops and work-
stations connected by a standard LAN. However, the demand for low-latency
and high bandwidth, especially for communication intensive applications, led to
the development of new communication architectures with user-level communi-
cation [3,2,17]. The Virtual Interface Architecture (VIA) specification [4], jointly
worked out by Compaq, Intel, and Microsoft, is the most significant development
for low-overhead message-passing communication within a compute cluster. The
common approach is to remove the operating system from the critical path of
sending and receiving messages. Mapping parts of the network interface into
the user’s address space such that messages can be handled at user-level avoids
expensive system calls as well as buffering in the network layer.

The VIA approach is well suited for system area networks (SAN) which
allow direct access to the network interface. In addition, new interconnection
technologies like the Scalable Coherent Interface (SCI, IEEE Std. 1596-1992)
[#0jporsthesPECyMemorysChannelgl#jafacilitate communication via distributed
shared memory (DSM) as individual load and store operations are turned into
remote memory accesses.

A. Sivasubramaniam, M. Lauria (Eds.): CANPC’99, LNCS 1602, pp. 196-210, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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The SMiIiLE (Shared Memory in a LAN-like Environment) project at LRR-
TUM investigates in high-performance cluster computing with SCI as the inter-
connection technology. SCI-based parallel systems with NUMA characteristics
(Non-Uniform Memory Access) consisting of PCs as compute nodes and SCI as
network fabric serve as platforms for the software developments studying how
to map parallel programming systems efficiently onto SCI hardware.

In this paper, we first demonstrate how SCI’s hardware supported DSM can
be utilized for fast, reliable, and low-overhead message-passing communication.
We present three efficient implementations of message-passing communication
libraries for SMiLE cluster platforms: Active Messages [22,15], socket commu-
nication over SCI [23], and a package with basic communication mechanism,
the Common Messaging Layer. These libraries are communication substrates
intended to be used as basis for MPI or PVM implementations over SCI [10].

While user-level communication architectures like the ones mentioned above
can efficiently be utilized for message-oriented parallel programming, there is
also the need to support the shared memory programming model as this is also
widely used and accepted.

Shared memory offers, compared to the message passing paradigm, an eas-
ier way to parallel programming. This is achieved by providing a single global
address space allowing for a similar programming style to that on sequential
machines. This ease comes at the cost of higher implementation complexity. Due
to this, shared memory programming can mostly be found on tightly coupled
machines, like SMPs. The only way to utilize shared memory on standard cluster
architectures is through pure software DSM systems [1,20] which lack efficiency
and/or transparency.

SCI with its remote memory capabilities through a hardware DSM abstrac-
tion closes this gap by bringing shared memory programming models onto loosely
coupled architectures like clusters of PCs. This allows to exploit clusters using
this easier way of programming as well as for the large already existing code
basis of applications written for shared memory machines. However, in order to
be able to support transparent shared memory on top of SCI, techniques used
by SW-DSM systems have to be merged with the remote memory capabilities.

In summary, with SMiLE both widely accepted parallel programming par-
adigms — message passing and shared memory — are provided for SCI-based
parallel systems. This offers a previously unknown flexibility in terms of par-
allel and distributed cluster programming support as demonstrated within this
paper.

The reminder is organized in the following manner. Section 2 gives a brief
introduction into SCI and describes our experimental platform. The implemen-
tation of the message passing layers are then discussed in Section 3 followed in
Section 4 by a description for a global virtual memory layer for SCI clusters. Sec-
tion 5 discusses some related projects, while Section 6 provides a brief outlook
into.-the future.and. closes-with some concluding remarks.
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2 Bringing it together with the help of SCI

The SCI standard [19] specifies the hardware interconnect and protocols allowing
to connect up to 64 K SCI nodes (processors, workstations, PCs, bus bridges,
switches) in a high-speed network. A 64-Bit global address space across SCI
nodes is defined as well as a set of read-, write-, and synchronization trans-
actions enabling SCI-based systems to provide hardware-supported DSM with
low-latency remote memory accesses. In addition to communication via DSM,
SCI also facilitates fast message-passing. SCI nodes are interconnected via point-
to-point links in ring-like arrangements or are attached to switches. The logical
layer of the SCI specification defines packet-switched communication protocols.
An SCI split transaction requires a request packet to be sent from one SCI node
to another node with a response packet in reply to it. This enables every SCI
node to overlap several transactions and allows for latencies of accesses to remote
memory to be hidden. Optionally, the SCI standard defines a directory-based
cache coherence protocol.

For the software developments a SCI-based PC cluster is being used. This
platform consists of four high-end PCs and SCI hardware. Each PC is equipped
with a Pentium-II processor running at 233 MHz, 128 MB of main-memory, a
33 MHz 32b PCI bus, and the 440FX chipset. Additionally, a PCI-SCI adapter
card (Rev. B, LC-1) from Dolphin Interconnect Solutions [6] is plugged in the
PC’s PCI bus such that the four PCs are connected up into an SCI ring. No
cache coherence mechanism is being implemented as it is not prossible to snoop
the PC’s I/O bus for all processor-memory operations. Therefore, SCI address
spaces are non-cacheable by default to ensure consistency. The running SCI
clusters described above delivers a raw communication performance of about
2.6ps latency and 44 MB/s bandwidth.

Each SCI node can create shared memory segments in physical address space
and export them into the SCI network. Pages comprising exported segments are
pinned down in memory. A process may further map DSM segments into its I/O
and from there into its virtual address space. Once the settings are established,
internode communication can be performed at user-level. Figure 1 demonstrates
the levels of memory mappings.

3 Message passing on top of SCI

3.1 Concept and design

The support for asynchronous, point-to-point message passing, is the basic build-
ing block for all three messaging layers described further below.! Since our pri-
mary goal is to achieve high communication performance over the SCI cluster
interconnect, this basic messaging mechanism must therefore be made as efficient
as possible.

L We use the term message passing to denote data transfers in general, including those
taking place over stream sockets.
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As a result, a number of design guidelines pertaining to performance have
been put forth for the library implementations. Communication is performed at
user level whenever possible and profitable in order to avoid context switches
and operating system overhead. Furthermore, each layer’s design aims to reduce
copy operations to the minimum required by the API semantics or the network
transfer. Buffered remote write operations over DSM should be applied, simul-
taneously inefficient remote reads avoided as far as possible. If available, the
most profitable SCI communication mechanism available for a given message
size (programmed I/O or DMA-based transfers) should also be chosen.

3.2 Implementation

The messaging mechanism over SCI DSM is based on a shared data structure
called the receive ring buffer (RRB) in the sequel. The RRB is a ring structure
where the sending node writes messages into and the receiver searches for and
copies out messages. The RRB physically resides in the local memory of the
receiving node, made up of pages locked in memory, and is exported and mapped
into the address space of the sending process. This is depicted for bidirectional

ol Lalu Zyl_i.lbl

1apping are set up for each sender and
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All the three communication platforms comprise a library that is linked to
the application program, and a daemon process that assists the library in setting
up these communication areas (besides other tasks).

Simple flow control is achieved by maintaining a start pointer and an end
pointerin order to delimit the RRB area that contains valid data (sent messages).
Choosing the physical locations of the pointers appropriately, i .e. putting the
start pointer at the receiver’s end and vice versa, allows them to be updated with
buffered writes, while additional local copies allow to avoid inefficient remote
read operations when they need to be checked before data transfers.

In most cases, the libraries rely on the memcpy () function for as efficient copy
operations as possible.

While all the libraries share this common communication mechanism over
SCI DSM, the details of the RRB and its use vary. In particular, the RRB size
and the number and granularity of the RRB entries is different. For example,
both AM and the CML have fixed-sized slots for messages (or fragments thereof),
while the SSLib can transfer a variable amount of data, according to the stream
socket semantics.

This communication style implies that there are two copy operations involved
in each data transfer: one copy into the RRB out of the sending process’ data
structure, and one copy out of the RRB into the data structure of the receiving
process. Additional copy operations are avoided as far as possible.

3.3 Message passing APIs

Active Messages 2.0. Active Messages (AM) can be regarded as lightweight
asynchronous remote procedure calls (RPCs), each of which is a request/reply
pair [5]. A request AM becomes active on the receiving end in that it invokes a
i o service the request and to send back
y the reply handler on the requesting
a fixed set of primitive data types.
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Our SCI AM layer implements AM Specification 2.0 [15] which defines com-
munication endpoints. These provide basic multi-user support and protection
mechanisms, thus incurring higher message processing overhead, e.g. for invok-
ing the message handler via a handler table in the endpoint. Bulk data transfers
are supported as well. More details of the SCI AM library are given in [9].

Connection setup with the AM layer is performed during startup through the
AM daemon which removes itself completely from the communication path after
it has been established. Polling is used for the reception of messages as opposed
to remote interrupts. While these do exist on the current SCI hardware, their
incorporation into the operating system proves to be too heavyweight. Device
driver recognition of a remote interrupt, posting a signal, and the combined
signal-delivery times to the application prove to be too high to utilize any of the
short latencies offered by the hardware and are thus not used in the experiments.
A comparable system environment in [11] showed SCI-generated interrupts to
exhibit latencies of about twenty times of those achieved with polling.

SCI Socket Library. The SSLib offers the Berkeley Sockets API, the de facto
standard for network programming on Unix platforms [14]. The SSLib conforms
to all the semantics of the standard sockets API as closely as possible. Both TCP
and UDP semantics are implemented at user level for communication within the
SCI cluster. Currently, there is no router functionality to the TCP/IP world.

SSLib currently runs on Solaris, Linux and Reliant Unix platforms using
Dolphin SBus-SCI and PCI-SCI adapter cards. Details can be found in [23].

In contrast to the Actlve Messages SCI socket connections are established on
mon (SSD). The SSDs of a distributed
n areas amongst each other. Initiating
stablishing pinned shared memory re-
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gions across the participating nodes and handing them over to the application.
Furthermore, queuing of requests in accordance with the BSD socket semantics
is also performed. The actual data transfers are performed analogously to the
transfers in the AM layer. Again, polling is used for receiver notification for the
same reasons cited above.

Common Messaging Layer (CML) for PVM and MPI. The CML API provides
functions for sending and receiving point-to-point messages from and to user
memory. Messages can be received by blocking or non-blocking functions as
required by the higher level libraries.

Also included are means of message identification in the form of tag and com-
municator values, thus allowing higher communication layers to retrieve selected
messages from the network. Furthermore, to prevent possible deadlock situa-
tions, the CML provides a mechanism to clean up the message receive buffer
while waiting for a certain message.

The CML also contains support for connecting and disconnecting nodes and
for packing and unpacking data — both required for PVM. A further feature is
optional thread safety for MPI. It runs on multiple platforms (Solaris, Linux,
and Windows NT) in order to make MPI and PVM implementations portable.
More details of the CML are available in [10].

Due to hardware limitations to the number of SCI shared memory segments,
the CML removes potentially blocking messages from the RRB into a so-called
unexpected-message queue (UMQ), increasing the number of potential copy op-
erations. Furthermore, the RRB as well as the UMQ have to be checked on
initiation of a receive operation.

3.4 Experiments and results

Short Message Performance. Short message performance was assessed using the
LogP model described in [5]. The numbers for all three layers are shown in Table
1 and were derived from the graphs given in Figures 4, 5, and 6, respectively,
while the roundtrip times (RTT) were measured seperately. They clearly reflect
the implementation differences. Active Messages, being the layer with the lean-
est functionality, exhibits the lowest overall times. Since TCP/IP semantics only
permit 1-byte messages as the smallest packet size, the overheads of the socket
library grow: packet header plus payload have to be sent, necessitating a mem-
ory barrier otherwise unneeded. Intermediate copying also increases the receive
overhead. The similar functionality of the Common Messaging Layer is finally
reflected in its comparable performance figures.

Long Message Performance. The bandwidth tests for the three libraries unveil
noysurprisessy Withsgrowinggmessageglengths, the maximum throughput is about
35 Mbytes/s for AM and CML, and 37 Mbytes/s for SSLib which can use very
large RRB sizes.
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|msg. layer||RTT| L |os |or| g |
AM 2.0 |/ 14.0]2.7|4.3| 0 | 5.0
SSLib || 25.4|2.6/8.4/1.7|11.3
CML 26.6 |3.0(8.3|2.0|11.5

Table 1. Round-trip time RTT and the LogP model parameters latency L,
send and receive overheads o, and o,, and message gap g for all three messaging
layers. All times in us.

4 True shared memory

4.1 Concept and design

Unfortunately, SCI alone can not provide a global virtual memory abstraction
as it is required by shared memory programming models. Both its hardware
and software components only target the utilization of large, contiguous, and
permanently pinned memory segments. To overcome these limitations and to
reach a fully transparent implementation of a global virtual address space, the
SCI remote memory capabilities have to be merged with mechanisms well known
from traditional software DSM systems. The memory is distributed with the
granularity of pages and these distributed pages are then combined into a global
virtual address space. In contrast to pure software mechanisms though, no page
has to migrated or replicated avoiding traditional software DSM problems like
false sharing. All remote pages are simply mapped using SCI’s HW-DSM and
then accessed directly. The result is a fully transparent global virtual address
space which we call SCI Virtual Memory or SCI-VM [18].

Team on A Team on B

Abstraction of a global distribu}e(‘{process )

Virtual address space on A Virtual address space on B

LINCT LI T T NN T T
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Physical memory on B
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This concept is further illustrated in Figure 7 for a two node system. In order
to build a global virtual memory abstraction, a global process abstraction also
has to be built with team processes as placeholders for the global process on each
node. These processes run on top of the global address space which is created
by mapping the appropriate pages from either the local physical memory in the
traditional way or from remote memory using SCI HW-DSM.

The mapping of the individual pages in done in a two—step process. First,
the page has to be located in the SCI physical address space from where it can
be mapped in the PCI address space using the address translation tables (ATT)
of the SCI adapter cards. From there, the page can be mapped with the help
of the processor’s page tables into the virtual address space. Problematic is the
different mapping granularity in these two steps; while the latter mapping can
be done at page granularity, the SCI mappings can only be done at the basis of
512 KByte or 128 pages segment. To overcome this difference, the SCI-VM layer
has to manage the mappings of several pages from one single SCI segment. The
mappings of the SCI segments themselves will be managed with an on-demand,
dynamic scheme very similar to paging mechanisms in operating systems.

4.2 Implementation challenges and problems

The design discussed above presents several interesting implementation chal-
lenges. The most severe one is related to the integration of the SCI Virtual
Memory presented above into the underlying operating system and its virtual
memory management. The SCI-VM has to be able to perform mappings at page
granularity to construct the global virtual address space discussed above and to
replace or enhance the operating system’s page fault handler to introduce the
SCI-VM functionality. In addition it needs control over the locking and unlock-
ing of individual pages. While the latter issue is implementable using the kernel
level functions of Windows NT, the other two are not supported and/or docu-
mented. The only way around this solution is to bypass the operating system and
to manipulate the appropriate hardware resources directly, i.e. the page tables
to perform mappings of single remote pages and the IDT (Interrupt Descriptor
Table) to intercept the page fault handler. Experiments have shown that this is
possible without interfering with Windows NT stability if appropriate clean-up
routines are provided which allow to hide the manipulations from the VMM
after program termination.

In addition, the integration of the SCI-VM concept into the currently existing
software infrastructure also imposes problems as it is mainly intended to provide
support for sharing large, pinned segments of contiguous memory. To solve this
problem, the hardware has to be addressed directly through a specialized device
driver which allows fast and direct mappings of small remote memory segments.

Third, it is normally not possible to cache remotely mapped memory due to
the incoherent nature of the PCI bus. However, caching is necessary to overcome
thepproblemypofytheplargeplatenciesginvolved when reading transparently from
remote memory (around 6us per access). The only solution here is to apply a
relaxed consistency model that allows to enable caching while coping with the
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possible cache inconsistency. We currently use the standard POSIX consistency
model that relies on synchronization points. At these points the memory is made
consistent by flushing the caches.

4.3 First experiments and results

The current implementation of the SCI-VM is a prototype developed for Win-
dows NT based on Dolphin’s driver infrastructure. However, only the setup func-
tionality and the physical access layer of this software are utilized by the SCI-
VM. The actual control of the SCI hardware is directly implemented within the
SCI-VM as described in the preceding section. The implementation also relies
on an especially developed VMM driver that realizes the functionality to by-
pass the operating system. It allows the SCI-VM to access the page directories,
to manipulate the cache settings, and to access kernel level VMM functions of
Windows NT.

On top of this SCI-VM an SPMD programming model has been implemented
that allows the parallel execution of programs across the cluster in a synchronous
manner. Especially resource allocations have to be done synchronously by all
nodes and synchronization is mainly done using global barriers. This results in
a simple yet efficiently usable programming model that forms the basis for all
following experiments.

We conducted the experiments using two artificial benchmark codes: a sum
over a linear array and a standard matrix multiplication. Both are implemented
without any source code level optimizations for locality or load balancing. They
both operate on a working set of 512 KByte held in the global virtual address
space which results in the sum program in an array of roughly 131000 values
and in the matrix multiplication program in three matrices with 418x418 values
each. The physical memory for this address space is distributed across the nodes
in a round robin fashion at page granularity (4 KBytes) completely transparent
for the application.

For both codes we measured the speedup on four nodes compared to sequen-
tial execution on local memory. In addition, we also measured the sequential exe-
cution on global memory distributed across all nodes to investigate the overhead
caused by using the physically distributed memory provided by the SCI-VM.
The results of all experiments can be seen in Table 2.

In both cases, a significant speedup of around 2.6 is achieved without applying
any kind of locality optimization only relying on the transparency of the SCI-VM
and its relaxed consistency model. Despite these similar numbers for both codes,
however, the overhead numbers are radically different. The sum code is only able
to utilize the cache for spatial locality as it traverses the global array only once.
The overhead is therefore rather high, in contrast to the matrix multiplication
which is able to utilize both spatial and temporal data locality. In the parallel
case, however, all nodes operate on the same data causing memory conflicts on
thepSClynetworkspandycachepinvalidations on remote nodes. This reduces the
efficiency in a way that the low overhead can not totally be transformed into
speedups. In the sum code, on the other hand, each node works on distinct data
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sets (a subpart of the array) which eliminates the problems seen in the matmult
code.

| || Sum |MatMult|

Sequential / local memory ||53.59 ms|2822.42 ms
Parallel / global memory ||20.65 ms|1057.70 ms

Speed-up 2.60 2.67
Sequential / global memory||98.42 ms|2881.07 ms
SCI-VM overhead 83.65 % 2.08 %

Table 2. SCI-VM speed-up and overhead numbers for 4 nodes.

5 Related work

Communication architectures with user-level communication are already men-
tioned in Section 1. [11] studies how to map parallel programming models ef-
ficiently onto an SCI-based workstation cluster which consists of eight Ultra-
SPARCS interconnected by Dolphin’s SBus-SCI adapters. For low-latency com-
munication via Active Messages they use a similar approach as mentioned in
this paper .

Work on shared memory models for clusters of PCs is mostly done with the
help of pure software DSM systems like TreadMarks [1], Brazos [20], Millipede
[12], and the SVMIib [16]. Only very little work has been done on direct utiliza-
tion of HW-DSM for global memory abstractions in clusters. Examples for this
kind of work, which are also based on SCI, are the utilization of HW-DSM for the
implementation of Split-C [11] and SciOS [13], a system designed for swapping
into remote memory regions while providing System-V style shared memory.

This work is in principle also applicable to any other non-cache-coherent
NUMA architecture. One widely known commercial representative of this type
of machine is Cray/SGI’s T3D/E [24]. Also on this machines efficient low—level
message passing, e.g. in the form of Fast Messages [17], and shared memory
programming in the form of a restricted put and get functionality is available.
However, no global virtual memory system like the SCI-VM presented above
is provided. Other well known work for NUMA systems in academia can be
found at Princeton University in the Shrimp project [3] and at the University of
Rochester in the Cashmere project [21].

6 Conclusions and future work

of PCs connected with the help of the
ntly support both major programming
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models for parallel systems, message passing and shared memory. The message
passing capabilities have been demonstrated using three different libraries. With
their VIA style implementation on top of SCI, they offer low latency messag-
ing while still allowing for high bandwidth. To also support transparent shared
memory, a programming model that is traditionally known from tightly coupled
systems like SMPs, SW-DSM techniques have to be merged with the remote
memory capabilities to create a global virtual memory. This forms the basis for
efficient, low-overhead execution of shared memory codes.

The work in the SMIiLE project will be continued for both programming
models by developing higher level programming models and more detailed eval-
uations using real-world application. In the area of message passing, we will focus
on the efficient implementation of PVM on top of the CML presented above and
its evaluation using irregular communication intensive problems. The work on
Shared Memory will continue the efforts towards a full SCI-VM implementa-
tion including a fully transparent shared memory programming model with an
API compliant to the POSIX standards for multithreading. Additionally, the
concepts will also be evaluated using several large applications.

To summarize, the SMiLLE project extends the architecture of clusters of PCs
to transparent shared memory while still enabling highly efficient message pass-
ing with low latencies and high bandwidth. This increased flexibility broadens
the numbers of codes that can directly be used on this architecture and with
that also the group of potential users. Furthermore, the choice of a programming
model for newly developed code will no longer be forced by the architecture, but
rather be decided by the preference of the programmer. All of this will make the
architecture of clusters even more attractive and will raise their importance as
a low cost alternative for parallel computing.
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Abstract. In this paper we present an efficient design for message pass-
ing over a reflective memory network'. First, we consider the attributes of
reflective memory communication networks and the requirements to ef-
ficiently build message-passing functionality on these networks. We then
introduce the Bill-Board Protocol, a lock-free protocol which provides
low-latency send, receive, and multicast functionality to higher-level ap-
plications over reflective memory networks. The communication protocol
and an implementation on SCRAMNet is described in detail. Lastly, the
performance of this protocol is demonstrated.

1 Introduction

Clusters of Workstations are becoming increasingly popular as a platform for
parallel and distributed computing. For parallel computing, clusters offer a cost
effective alternative to conventional parallel computers|1,3,13]. For distributed
computing they offer good scalability and high availability. Since they use com-
modity processors and networks, the performance of clusters of workstations is
often comparable to that of massively parallel processors (MPP’s) but at a much
lower cost.

Unlike conventional parallel processors which use customized interconnection
networks for communication [6], workstation clusters use commodity networking
technologies. In recent years many new high performance networking technolo-
gies have emerged such as ATM [2], Fast Ethernet [11] and FiberChannel [14].
These networks provide high bandwidth but have high latency due to network
routing and high software overhead. For high performance in parallel process-
ing, however, low latency is very critical. As a result considerable effort has been
put into developing low latency networking technologies such as Myrinet [4] and
messaging software such as Illinois Fast Messages [12] and U-Net [15].

Reflective memory networks provide a limited amount of non-coherent shared
memory across a cluster of workstations. Each workstation is equipped with a

I This research is supported by NSF-SBIR Grant DMI-9761318.

A. Sivasubramaniam, M. Lauria (Eds.): CANPC’99, LNCS 1602, pp. 211224, 1999.
(© Springer-Verlag Berlin Heidelberg 1999
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network interface card (NIC) which possesses a memory bank. Memory on the
NICs is not physically shared but each update to a location on any one of the
NICs is transmitted to the other NICs on the network. This causes the memory at
each NIC in each workstation to be a reflection of the memory of the other NICs.
However, reflective memory networks provide non-coherent shared memory. That
is, if multiple nodes make updates to the same shared location, different nodes
may see the updates in a different order.

Examples of reflective memory networks include Encore’s Reflective Memory
Network (later DEC Memory Channel), SCRAMNet, and VMIC (VME Mi-
crosystem International Corporation) Fiber-Optic Reflective Memory product.

Shared memory and message passing are two programming models available
for parallel programming. Each of these models may be implemented on distrib-
uted memory systems. We aim to use reflective memory to provide low latency
message passing for small message sizes and use the mirrored aspect for im-
proved multicast messages. These reflective memory networks have advantages
over conventional interconnects :

— Low latency: Since communication is effected by writing to a location in
memory, protocol overhead is done away with. Consequently, latency for
sending messages is very low. This is particularly advantageous for shorter
messages.

— Multicast Capability: The very nature of reflective memory networks
lends itself to multicast communication, since a write by one process be-
comes visible to many other nodes. It has been shown that the performance
of other collective operations can be improved by improving multicast per-
formance. Some conventional networks do provide some multicast ability.
ATM provides multicast, but it comes with the overhead of establishing a
multicast connection. Ethernet provides broadcast, but does not have the
flexibility to specify a group of receivers. In reflective memory networks, it
is possible to do multicast at a cost just a little higher than that for sending
a message to one receiver.

This paper is organized as follows. Section 2 describes the motivation and de-
sign goals for developing low latency message passing for reflective memory net-
works. Section 3 describes the BBP architecture and our initial implementation
on SCRAMNet, Section 4 presents the performance of BBP on the SCRAMNet
network, and Section 5 presents our conclusions.

2 Motivation and design goals

The importance of low communication latencies and small-message bandwidth
has been demonstrated in [15]. Additionally, for parallel computing, the latency
of the multicast operation typically has an impact on application performance.

DEC’s Universal Message Passing (UMP) library implementation on MEM-
ORYCHANNEL[#f]sprovidessgoodsmessage passing performance over reflec-
tive memory. Their implementation uses a combination of lock-free and lock-
controlled buffers for point-to-point messages and only lock-controlled buffers



Low Latency Message-Passing for Reflective Memory Networks 213

for multicast functionality. The cost of acquiring and releasing an uncontested
spin-lock takes approximately 130 and 120 microseconds, respectively [10]. This
is a significant cost which would be eliminated if the reliance on spin-locks could
be eliminated.

Here, we present a framework for implementing efficient message passing
functionality on reflective memory networks. We describe the Billboard Protocol
(BBP), and its implementation on SCRAMNet, a reflective memory network.
There were several underlying design goals:

— Provide efficient user-level message passing primitives that provide typical
send/receive functionality to application programs. Much of the overhead
in messaging software is copying messages from user space to kernel space
and in between layers of the messaging software. The most efficient way of
sending messages is to eliminate this copying.

— Allow for multiple processes on a single machine. A single workstation may
have multiple processes running which need to communicate through the
network. The protocol should permit more than one process per node to
share the same NIC.

— Provide feasibility for adding write protection. Messages are sent on the net-
work by writing to network memory. When there are multiple participating
processes, the protocol should implement write protection.

— Provide in-order delivery between any two processes. Messages from a process
A to process B must be delivered in the same order in which they are sent.

— Minimize accesses to the NIC over the I/0 bus. The processor in the work-
station has to go through the I/O bus to read network memory. Since the
network memory can receive updates over the network, and not just the host
processor, it cannot be cached. Also I/O buses are slower than system buses
so it takes the processor more time to access network memory than the main
memory. The I/O bus is normally shared with other devices. Hence it can
be a bottleneck, and accesses over the I/O bus must be minimized.

— Implementation of the protocol should not require any locks. In shared mem-
ory systems, there is substantial overhead involved in waiting for, acquiring
and releasing locks. For low latency operation, the protocol should be lock-
free.

— Design memory access and use protocol such that applications may benefit
from the inherent broadcast/multicast capability of the network.

3 Design and implementation of Bill-Board Protocol
(BBP)

In this section we present the design and implementation of the BBP. The general
design goal of the BBP was to provide low-latency send, receive, and multicast
primitives for reflective memory networks. Throughout the design process, the
higherslevelyrequirementspofsMPIGHy| fsimplementation and use of the library
as a platform for TreadMarks [ ], such as pairwise in-order delivery, were con-
sidered.
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Although reflective memory hardware may provide a variety of features, the
only functionality assumed by the BBP is the ability to map a portion of a
process’ virtual address space to the reflective memory area.

3.1 Reflective memory organization

The BBP divides the reflective memory into two distinct partitions: the message
data partition and the control partition. The message data partition contains
only the actual payload of messages while the control partition contains all other
information pertaining to messages. Each of these partitions is further divided
into NUM_PROC separate areas, one for each process as described below.

Each process is associated with two areas: a message data area and a control
area. A key aspect of the reflective memory organization for this protocol is that
only a single process is permitted to write to any particular memory location,
allowing lock-free operation.

The message data area is managed and written to by only the associated
process. A portion of this area is allocated for each message sent (we’ll refer to
this as a message buffer). Other processes will read message data from this area
when appropriate.

Also associated with each process is a portion of the control partition, a
control area. A process’ control area contains message descriptor blocks, outgoing
message (MSG) flag blocks, and incoming acknowledge (ACK) flag blocks.

There’s an array of NUM_BUF message descriptors which are written only by
the associated process (NUMBUF is the maximum number of available message
buffers). Each message is associated with a message descriptor by buffer num-
ber. A message descriptor contains all information required by a destination
process to receive the message. The current implementation’s message descrip-
tor includes fields for message length, message data location, message type, and
a sequence number.

There are NUM_PROC arrays of MSG flags and NUM_PROC arrays of ACK flags, each
associated with a single destination process. Each of these flag arrays contains
NUM_BUF bits, one for each message buffer this process may send. The ACK flags
are used to acknowledge a message and are written to by only one destination
process.

Figure 1 illustrates the layout of reflective memory for the protocol.

3.2 Communication protocol

Use of reflective memory for message passing with the BBP involves allocation
and initialization of a structure which provides storage of (a) logical address of
thisyprocessy(b)spointersptopmessagesand control partitions and areas, and (c)
communication state. After initialization, messages may be sent and received
using the functions provided by the API listed in Figure 2.
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Fig. 1. Reflective memory layout for the Bill-Board Protocol for P processes and n
buffers for each process. Process 0 has allocated 2 message buffers of length 128 and
42 bytes each. Both of these buffers are associated with outstanding (unacknowledged)
messages. Note that a message is unacknowledged when the MSG flag and ACK flag are in
different states: buffer 1 is unacknowledged by process 1 and buffer 3 is unacknowledged

by both processes 1 and 2.
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These are the communication components of sending a message or a multi-
cast:

— Allocate a message buffer (which may require reclaiming previously used
message data areas).

— Copy message data from process memory to message data area on reflective
memory.

— Assemble and copy message descriptor to appropriate location in control
area.

— Toggle state of appropriate MSG flags.

To send a message, a message buffer is allocated from the message data
area. This allocation reserves a contiguous block of reflective memory and a
logical buffer number. The message contents are then copied to the message data
area at the allocated location. Message length, location, type, and a sequence
number are written to the message descriptor corresponding to the allocated
buffer number. Sequence numbers are generated independently by each process
to provide an order to the stream of messages being sent by any particular
process. Finally, the MSG flag corresponding to both the appropriate destination
address and the allocated buffer number is toggled to indicate that a new message
has been sent. The buffer number and message data block will not be reused until
acknowledgement by the receiver is confirmed.

Multicast is handled in much the same way as a send. A buffer is allocated,
message contents are copied, and the message descriptor is written. For multicast,
however, multiple MSG flags are toggled, one for each of the specified destinations.
Each of these MSG flags will be associated with the same message buffer but with
different processes. For multicast, the buffer number and message data block will
not be reused until acknowledgement is confirmed from all destinations.

There are two steps to receiving a message: checking for the presence of
a new message and actually receiving the message. These two steps could be
combined but are available separately to provide additional flexibility. These are
the components of checking for the availability of new messages:

— Check for change of state in pertinent MSG flags.
— Of the MSG flags which have changed state, find the one with the earliest
sequence number.

These are the components to then receive a message:

— Copy the message data from reflective memory to the specified location.
— Toggle the state of the appropriate ACK flag to acknowledge receipt.

To determine if a new message is available to be received from a specified
source, the MSG flag array affiliated with this process is read from the source’s
control area. Each MSG flag which has changed state indicates a message from
sourceydestinedsforpthisyprocesspBasedgon the sequence numbers read from the
message descriptors associated with these toggled flags, the message sent earliest
by source is selected as the next to be received. To actually receive this message,
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the specified number of bytes is copied from the source message data area to the
specified receive buffer (the offset within the source message data area is found in
the message descriptor). Finally, the appropriate ACK flag is toggled to indicate
to the source that this process has received the message.

Logical buffer numbers and message data memory are limited resources.
When either all buffers are allocated or message data memory is exhausted,
previously used message buffers must be reclaimed. A message buffer may be re-
claimed when all destinations have acknowledged receipt of the message. If the
message buffer was allocated to send to a single destination, only a single ACK
flag must be checked. However, if the message buffer was allocated for a multi-
cast, state of a set of ACK flags must be verified to insure that all destinations
have copied the message to a local receive buffer before reclaiming.

In the current implementation, the function which reclaims buffers is called
when an attempt to allocate a buffer fails (either because replicated memory
is exhausted or all buffers are already allocated). At this point the sender will
spin until any previously sent message is acknowledged. A sender’s outstanding
unicast messages may have been sent to any other node so acknowledgement by
any of these receivers will free up a buffer.

3.3 Implementation

We have initially implemented the BBP on Systran’s SCRAMNet reflective mem-
ory product [5] with 2MB of memory on each card.

Initialization Proper operation relies on each process initializing BBP commu-
nication with a unique logical address and the same total number of processes. A
fixed size control area of 4096 bytes is allocated to each process. The remaining
memory is divided into equally sized message data areas, one for each process.
Defining NUM_PROCS as the maximum number of processes, NUM_BUFS as the max-
imum number of logical message buffers for each process, and DESC_LEN as the
length of a message descriptor in bytes, the memory bytes required for each
control area, M onirol, 1S

NUM_PROCS x NUM_BUFS
Mcont?“ol =2 ( 3 >

+(NUM_BUFS x DESC_LEN)

When initializing for a 64 process system with a maximum of 64 buffers
and a message descriptor length of 8 bytes, 1536 bytes (of the available 4096
bytes) of control area are used and the size of the message data area allocated to
each process is 28,672 bytes. Pointers to each message data area as well as any
flag arrays of interest are calculated and stored in the BBP structure. There is
additionabstaterinformationmusedstorreduce the required traffic over the I/0 bus
which is also initialized. This state information includes space to buffer portions
of reflective memory, message descriptor buffers, structures used to maintain the
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bbp_init( int num_procs, int rank )

Allocates and initializes memory for the BBP state structure for process with
logical address (rank) of (num_procs). This function returns a pointer to a bbp
struct which is passed with all other function calls.

bbp_Send( struct bbp *this_proc, char *buf, int len, int dest,
short msg_type )

Sends len bytes located at buf to process with logical address dest based on
current bbp state.

bbpMcast( struct bbp *this_proc, char *buf, int len, long *dests,
short msg_type )

Sends len bytes located at buf to processes indicated by dests based on current
bbp state. dests is an array of NUM_PROC bits indicating which logical addresses
should be sent.

bbpMsgAvail( struct bbp *this_proc, int source )

Returns a valid logical address from which a message is available or (—1) if no
message is available. If a valid source is supplied, only that source is checked. If
(—1) is supplied, multiple sources may be checked in a fair manner.

bbpRecv( struct bbp *this_proc, char *buf, int max_len, int source,
short msg_type )

Copies the next message (up to max_len bytes) sent by source into buffer beginning
at buf.

Fig. 2. Bill-Board Protocol API.

allocation of message buffers, and space to hold a list of new messages which
have been detected but not yet received. Use of this state information to improve
efficiency is discussed in detail below.

Flags When a message is sent, one or more MSG flags are toggled. If the flag bit
is 0, it is set to 1 and vice versa. At the receiver, instead of taking action when
a flag that is set, action is taken when a flag changes state. To detect changes
in state, a copy of a flag array’s last state is stored as the basis for comparison.
When changes in state are detected, action is taken for each flag with state
change and the new array is stored for future use.

! ing fl Oratpinitialization. Because all flags are initially
owledged while corresponding MSG and
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PCI memory access optimizations Because of the high cost of accessing
reflective memory over the PCI bus compared to cached main memory, our im-
plementation attempts to reduce PCI accesses where possible. Four implemen-
tation details which reduce either the frequency or length of reflective memory
accesses are discussed below.

— Keep cached copy of outgoing MSG and ACK flags. This avoids a read each
time a new flag is written. Because only a single process writes any particular
array of flags, that process may keep a cached copy of the state of these flags
and use the cached copy to perform change of state logic instead of repeatedly
reading the flag arrays over the I/O bus.

— Create a message list in sequential order when new message(s) are detected.
To ensure in-order delivery, the descriptors of all new messages must be
accessed to read sequence numbers. To avoid repeated reads of the same
descriptors over the I/O bus, all new descriptors are read and inserted into a
list ordered by sequence number. If 5 new messages are detected, 5 descrip-
tors are read and inserted into the list. The next 4 calls to check message
availability from this source return immediately without accessing the I/0
bus.

— Shorten the length of the message descriptor. This is especially significant
for keeping short-message latencies low. We have shortened the length of
the message data location by encoding the offset as a number of multi-byte
blocks rather than in bytes.

— Reduce the number of logical message buffers. The potential for this op-
timization will vary, depending on application requirements. To provide in-
order delivery, all MSG flags must be checked so the earliest message sent may
be received next. Therefore, the time required to read these flags increases as
the number of buffers increases. Reducing the number of buffers per process
reduces the time required to read the flags but also reduces the number of
concurrent outstanding messages possible.

3.4 Realization of design goals

Our implementation of the BBP meets the stated design goals:

— We have provided efficient user-level message passing primitives including
send, receive, and multicast.

— Multiple processes on a single machine may access the same NIC. In fact,
there is no distinction made between processes on the same node and those on
other nodes. The only identifier used is the logical process address assigned
at initialization time.

— Addition of write protection is feasible with minor modification to the con-
trol area layout. Currently the control area consists of outgoing MSG flags,
incomingpACKnflagsypandypoutgoinggdescriptors. If this layout was adjusted
to include outgoing ACK flags (instead of incoming), the associated process
would be the only writer to both the message data area and the control area.
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— In-order delivery between any two processes is accomplished through the use
of sequence numbers and the protocol requirement that all newly detected
messages be considered when selecting the next to be received.

— The implementation details described above seek to minimize the costliest
component of communication over the reflective memory systems being con-
sidered, data copy over the I/O bus.

— The implementation of the protocol does not require locks for either point-
to-point operations or for multicast.

— The protocol makes use of the inherent multicast capability of reflective
memory networks by allowing a single copy of message data to be read by
multiple receivers.

4 Performance of BBP on SCRAMNet

This section describes SCRAMNet, a reflective memory network, and the per-
formance of the BBP implementation on SCRAMNet.

4.1 Description and characterization of SCRAMNet network

SCRAMNet [5] is one type of reflective memory network, providing a limited
amount of non-coherent shared memory across a cluster.

Physically, SCRAMNet is arranged as a ring of up to 256 nodes using fiber-
optic or coaxial cable.

A fiber optic bypass switch ensures continuity in the ring when not all nodes
are powered on. For systems larger than 256 nodes, a hierarchy of rings is used
to accommodate more nodes. The data transfer latency over the ring is 250-
800 nanoseconds per hop, depending on the mode of transmission being used
and packet size. Fixed 4-byte transmission packets provide a throughput of 6.5
MBytes/second. Variable length packets (4 bytes to 1 KByte) can be used to
attain the maximum throughput of 16.7 MBytes/second with higher latency.

SCRAMNet uses Register Insertion for Media Access Control on the ring.
At each node, there is a switch which multiplexes incoming messages from the
incoming link on the network and the NIC to the outgoing link. If a message
arrives on the network, while the node is in the process of injecting a message
into the network, then the network message is queued. A message is generated
whenever a host writes to a location in SCRAMNet memory. Multiple writes are
put in a FIFO queue on the NIC and sent out one by one. Each message traverses
the entire ring once and then is removed from the network by the source node.

Communication is done on SCRAMNet by writing and reading to SCRAM-
Net memory. On average it takes 0.54 us to write one word to SCRAMNet
memory and 1.02 us to read one word from SCRAMNet memory.

4.2 Performance experiments and results

We have implemented the BBP for SCRAMNet on a cluster of dual 300MHz
Pentium II SMP boxes running Linuz version 2.0.30. We have measured the
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amount of time spent in the various tasks involved in communicating over the
network using the BBP. Figures 3 and 4 show these results. Results have been
shown for two message lengths: 4 bytes and 128 bytes. One-way message latency
is 7.8 p - seconds for 4-byte messages on a 2-node ring.

Figure 3 shows the cost of sending a message using the BBP. The bulk of the
time is spent in copying the message from user space to SCRAMNet memory.
This component of the cost grows linearly with the message length. By avoiding
unnecessary copying, the cost of sending has been kept down by keeping this
component to a minimum. The software overhead of sending a message is the
time spent in buffer allocation, writing the descriptor and notifying the desti-
nation process(es) of the message by toggling MSG flags. We show results for
both 1 destination and 8 destinations. For the 128-byte case, there is only a 3.25
microsecond increase in the time required to complete the send to 8 destina-
tions compared with the time required for a single destination. The dominating
component, message copy, is independent of the number of destinations.

Figure 4 shows the cost of receiving a message using the BBP. Again, we
see that bulk of the cost is involved in copying the message from SCRAMNet
memory to user memory and since this is done without any intermediate copying,
the receive overhead has been minimized. The receive components other than
message copy include the time required to (a) read incoming message flags, (b)
read the message descriptor, and (¢) acknowledge the message once copied.

The results discussed above for the send and receive components are in line
with measurements of one-way message latencies. The send portion is pipelined
while the receive portion is not. As 32-bit words are written to the SCRAMNet
NIC, they are transfered to the network. This overlaps the PCI-bus writes with
network transmission. The protocol, however, does not begin a receive until the
entire message has been written into the destination NIC’s reflective memory
and the MSG flag is set.

The above results describe the performance of the BBP on an unloaded
network (no other messages on the network). Figure 5 shows the performance
of BBP with increased network load. The latencies measured are for point to
point communication between two processes. Load is generated on the network
by communication between other processes on other nodes. As can be seen from
the figure, there is degradation of performance with increased network load.
Little degradation of performance was observed when multiple processes sent
concurrent messages with length of 4 bytes.

5 Conclusions

Reflective memory has two principle advantages: low latency and inherent mul-
ticast. We've taken advantage of these characteristics to develop the Bill-Board
Protocolythatyprovidesppointytoppointspin=order message delivery and an efficient
multicast delivery. In particular, the multicast latency (on SCRAMNet) is only
slightly longer than that of a point to point message which takes 7.8 p-seconds.
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Components of BBP Send Operation
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Fig. 3. Components of the Send operation in the BBP for 4-byte and 128-byte mes-
sages sent to 1 destination using bbp_Send and 8 destinations using bbp_Mcast.
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Performance of BBP under network load
160 T T T T T

2 Additional Senders <—
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Message Length (bytes)

Fig. 5. Performance of BBP for 4-byte point-to-point messages with additional net-
work load. Additional network load created by adding 1 or 2 additional senders of
concurrent point-to-point messages with size=768 bytes. These measurements perform
ed with a ring of 4 nodes.

Our protocol also avoids the principle problem associated with reflective
memory systems: the relative high cost of accessing NIC memory over the PCI
bus compared to accessing system memory. By allowing only a single process to
write to each region of NIC memory we avoid the high cost associated with a
locking protocol built on top of NIC memory. We’ve minimized the number of
writes to the reflective memory thereby insuring the best possible performance.

Future work includes adding user level protection mechanisms to the protocol
and possibly additional collective communication primitives such as barrier.

Additional Information: Additional papers and results related to this project
can be obtained from the Web page of Network-Based Computing group at OSU
(http://nowlab.cis.ohio-state.edu).
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